Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;18(7):1563-72.
doi: 10.1109/TIP.2009.2017363. Epub 2009 May 2.

Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images

Affiliations

Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images

Jian Yang et al. IEEE Trans Image Process. 2009 Jul.

Abstract

Three-dimensional reconstruction of vessels from digital X-ray angiographic images is a powerful technique that compensates for limitations in angiography. It can provide physicians with the ability to accurately inspect the complex arterial network and to quantitatively assess disease induced vascular alterations in three dimensions. In this paper, both the projection principle of single view angiography and mathematical modeling of two view angiographies are studied in detail. The movement of the table, which commonly occurs during clinical practice, complicates the reconstruction process. On the basis of the pinhole camera model and existing optimization methods, an algorithm is developed for 3-D reconstruction of coronary arteries from two uncalibrated monoplane angiographic images. A simple and effective perspective projection model is proposed for the 3-D reconstruction of coronary arteries. A nonlinear optimization method is employed for refinement of the 3-D structure of the vessel skeletons, which takes the influence of table movement into consideration. An accurate model is suggested for the calculation of contour points of the vascular surface, which fully utilizes the information in the two projections. In our experiments with phantom and patient angiograms, the vessel centerlines are reconstructed in 3-D space with a mean positional accuracy of 0.665 mm and with a mean back projection error of 0.259 mm. This shows that the algorithm put forward in this paper is very effective and robust.

PubMed Disclaimer

Publication types

LinkOut - more resources