Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug 1;107(5):865-72.
doi: 10.1002/jcb.22188.

Increased bone resorption and osteopenia in Dlx5 heterozygous mice

Affiliations

Increased bone resorption and osteopenia in Dlx5 heterozygous mice

Nadeem Samee et al. J Cell Biochem. .

Abstract

Distal-less (Dlx) homeobox transcription factors play a central role in the control of osteogenesis. In particular, Dlx5 regulates osteoblasts/osteoclasts coupling during perinatal bone formation. We analyze here the effect of Dlx5 allelic reduction in the control of bone remodeling. We first show that Dlx5 expression persists during postnatal bone development. We then compare the skeletal phenotype of 10- and 20-week-old Dlx5(+/-) mice to that of wild-type (WT) littermates. Dlx5(+/-) male mice exhibit lower bone mineral density (BMD) at both ages while only 20-week-old females are affected. microCT analyses reveal a reduction in cortical thickness of femoral midshafts in Dlx5(+/-) mice. Histomorphometry on distal femora shows no changes in trabecular structure and confirms a reduction in Dlx5(+/-) cortical thickness. The cortical decrease of 10-week-old mice does not derive from a reduction in periosteal bone apposition, but results from increased bone resorption with a significantly higher number of endosteal osteoclasts per bone surface and a larger marrow diameter. Urinary level of deoxypyridinoline is also higher in heterozygous mice confirming an increase in bone resorption activity. Our findings might be relevant for understanding complex, multifactorial diseases such as osteoporosis in which quantitative deregulation of gene expression leads to disruption of bone homeostasis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources