Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009:38:125-52.
doi: 10.1146/annurev.biophys.050708.133622.

The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes

Affiliations
Review

The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes

James A Hebda et al. Annu Rev Biophys. 2009.

Abstract

The dynamics, energies, and structures governing protein folding are critical to biological function. Amyloidoses are a class of disease defined, in part, by the misfolding and aggregation of functional protein precursors into fibrillar states. Amyloid fibers contribute to the pathology of many diseases, including type II diabetes, Alzheimer's, and Parkinson's. In these disorders, amyloid fibers are present in affected tissues. However, it has become clear that intermediate states, rather than mature fibers, represent the cytotoxic species. In this review, we focus particularly on lipid bilayer-bound intermediates. Remarkably, the precursors of these fibers are intrinsically disordered, and yet catalysis of beta-sheet formation appears to be mediated by the stabilization of alpha-helical states. On the lipid bilayer, these intermediate species have been implicated as cytotoxic through elimination of ionic homeostasis. Recent advances are enabling insights at a molecular level that promise to provide meaningful targets for the development of therapeutics.

PubMed Disclaimer

Publication types

LinkOut - more resources