Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Nov;62(11):2187-209.
doi: 10.1080/17470210902783646. Epub 2009 May 2.

Primitive computations in speech processing

Affiliations
Free article

Primitive computations in speech processing

Ansgar D Endress et al. Q J Exp Psychol (Hove). 2009 Nov.
Free article

Abstract

Previous research suggests that artificial-language learners exposed to quasi-continuous speech can learn that the first and the last syllables of words have to belong to distinct classes (e.g., Endress & Bonatti, 2007; Pena, Bonatti, Nespor, & Mehler, 2002). The mechanisms of these generalizations, however, are debated. Here we show that participants learn such generalizations only when the crucial syllables are in edge positions (i.e., the first and the last), but not when they are in medial positions (i.e., the second and the fourth in pentasyllabic items). In contrast to the generalizations, participants readily perform statistical analyses also in word middles. In analogy to sequential memory, we suggest that participants extract the generalizations using a simple but specific mechanism that encodes the positions of syllables that occur in edges. Simultaneously, they use another mechanism to track the syllable distribution in the speech streams. In contrast to previous accounts, this model explains why the generalizations are faster than the statistical computations, require additional cues, and break down under different conditions, and why they can be performed at all. We also show that that similar edge-based mechanisms may explain many results in artificial-grammar learning and also various linguistic observations.

PubMed Disclaimer

Publication types

LinkOut - more resources