Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jun;28(5):562-9.
doi: 10.1097/ICO.0b013e3181930bcd.

Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization

Affiliations
Comparative Study

Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization

Peirong Lu et al. Cornea. 2009 Jun.

Abstract

Purpose: The purpose of this study was to investigate the role of infiltrating macrophages in the development of experimental corneal neovascularization.

Methods: Corneal neovascularization was induced by alkali injury in mice deficient in a macrophage-tropic chemokine receptor, CCR2 or CX3CR1, or in mice treated with clodronate-liposomes (Cl2MDP-lip), which can selectively deplete monocytes/macrophages. Corneal neovascularization 2 weeks after alkali injury was assessed by immunostaining with anti-CD31 antibody. Intracorneal expression of proangiogenic and antiangiogenic factors was determined by reverse transcription-polymerase chain reaction.

Results: CCR2-deficient mice exhibited reduced alkali-induced corneal neovascularization with reduced macrophage infiltration, whereas CX3CR1-deficient mice developed a more severe form of alkali-induced corneal neovascularization with reduced macrophage infiltration. Selective macrophage depletion by Cl2MDP-lip treatment failed to affect alkali-induced corneal neovascularization as evidenced by immunohistochemical analysis using anti-CD31 antibody, whereas intracorneal macrophage infiltration was markedly reduced. Alkali injury enhanced the expression of proangiogenic molecules, including matrix metalloproteinase-2, matrix metalloproteinase-9, and tumor necrosis factor alpha, and antiangiogenic factors, including a disintegrin and metalloprotease with thrombospondin (ADAMTS)-1, thrombospondin-1, and thrombospondin-2. Cl2MDP-lip-treated mice exhibited a reduction in the messenger RNA expression of these molecules.

Conclusion: Because CCR2- and CX3CR1-expressing macrophages exhibit opposite activities in angiogenesis, depletion of macrophages as a whole may not have apparent effects on alkali-induced corneal neovascularization.

PubMed Disclaimer

Publication types

MeSH terms