Are binary synapses superior to graded weight representations in stochastic attractor networks?
- PMID: 19424822
- PMCID: PMC2727164
- DOI: 10.1007/s11571-009-9083-3
Are binary synapses superior to graded weight representations in stochastic attractor networks?
Abstract
Synaptic plasticity is an underlying mechanism of learning and memory in neural systems, but it is controversial whether synaptic efficacy is modulated in a graded or binary manner. It has been argued that binary synaptic weights would be less susceptible to noise than graded weights, which has impelled some theoretical neuroscientists to shift from the use of graded to binary weights in their models. We compare retrieval performance of models using both binary and graded weight representations through numerical simulations of stochastic attractor networks. We also investigate stochastic attractor models using multiple discrete levels of weight states, and then investigate the optimal threshold for dilution of binary weight representations. Our results show that a binary weight representation is not less susceptible to noise than a graded weight representation in stochastic attractor models, and we find that the load capacities with an increasing number of weight states rapidly reach the load capacity with graded weights. The optimal threshold for dilution of binary weight representations under stochastic conditions occurs when approximately 50% of the smallest weights are set to zero.
Figures




References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevE.72.031914', 'is_inner': False, 'url': 'https://doi.org/10.1103/physreve.72.031914'}, {'type': 'PubMed', 'value': '16241489', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16241489/'}]}
- Abarbanel H, Talathi S, Gibb L, Rabinovich M (2005) Synaptic plasticity with discrete state synapses. Phys Rev E 72:031914 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1109/T-C.1972.223477', 'is_inner': False, 'url': 'https://doi.org/10.1109/t-c.1972.223477'}]}
- Amari S (1972) Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans Comput C-21:1197
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1162/089976603321192086', 'is_inner': False, 'url': 'https://doi.org/10.1162/089976603321192086'}, {'type': 'PubMed', 'value': '12620158', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12620158/'}]}
- Amit D, Mongillo G (2003) Spike-driven synaptic dynamics generating working memory states. Neural Comput 15:565 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1103/PhysRevLett.55.1530', 'is_inner': False, 'url': 'https://doi.org/10.1103/physrevlett.55.1530'}, {'type': 'PubMed', 'value': '10031847', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10031847/'}]}
- Amit D, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys Rev Lett 55:1530 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/0003-4916(87)90092-3', 'is_inner': False, 'url': 'https://doi.org/10.1016/0003-4916(87)90092-3'}]}
- Amit D, Gutfreund H., Sompolinsky H (1987) Statistical mechanics of neural networks near saturation. Ann Phys 173:30
LinkOut - more resources
Full Text Sources