Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun 23;48(24):5700-7.
doi: 10.1021/bi900366p.

Effects of Zn(2+), Ca(2+), and Mg(2+) on the structure of Zn(7)metallothionein-3: evidence for an additional zinc binding site

Affiliations

Effects of Zn(2+), Ca(2+), and Mg(2+) on the structure of Zn(7)metallothionein-3: evidence for an additional zinc binding site

Gabriele Meloni et al. Biochemistry. .

Abstract

Human metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain, where it plays an important role in the homeostasis of the essential metal ions Cu(+) and Zn(2+). Like other mammalian metallothioneins (MT-1 and -2), the protein contains a M(II)(3)(CysS)(9) and a M(II)(4)(CysS)(11) cluster localized in two independent protein domains linked by a flexible hinge region. However, there is a substantially increased number of acidic residues in MT-3 (11 residues) compared with MT-2 (four residues) which may act as binding ligands for additional metal ions. In this study, the binding of Zn(2+), Ca(2+), and Mg(2+) to human Zn(7)MT-3 and its mutant lacking an acidic hexapeptide insert, Zn(7)MT-3(Delta55-60), was investigated and compared with the binding of Zn(7)MT-2. By using spectroscopic and spectrometric techniques, we demonstrate that one additional Zn(2+) binds with an apparent binding constant (K(app)) of approximately 100 microM to Zn(7)MT-3 and Zn(7)MT-3(Delta55-60), but not to Zn(7)MT-2. The changes in spectroscopic features of metal-thiolate clusters and gel filtration behavior reveal that the formation of Zn(8)MT-3 is immediate and is accompanied by a decrease in the Stokes radius (R(s)). The changes in the R(s) suggest a mutual approach of both protein domains. The fast binding of Zn(2+) is followed by a slow time-dependent protein dimerization. The binding of Zn(2+) to Zn(7)MT-3 is specific as in the presence of Ca(2+) and Mg(2+) only an alteration of the R(s) of Zn(7)MT-3 at substantially higher concentrations was observed. The significance of these findings for the biological role of MT-3 is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources