Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan:169 Suppl 1:S112-21.
doi: 10.1086/510100.

Bacteria as an agent for change in structural plumage color: correlational and experimental evidence

Affiliations

Bacteria as an agent for change in structural plumage color: correlational and experimental evidence

Matthew D Shawkey et al. Am Nat. 2007 Jan.

Abstract

Recent studies have documented that a diverse assemblage of bacteria is present on the feathers of wild birds and that uropygial oil affects these bacteria in diverse ways. These findings suggest that birds may regulate the microbial flora on their feathers. Birds may directly inhibit the growth of harmful microbes or promote the growth of other harmless microbes that competitively exclude them. If keratinolytic (i.e., feather-degrading) bacteria degrade colored feathers, then plumage coloration could reveal the ability of individual birds to regulate microbial flora. We used field- and lab-based methods to test whether male eastern bluebirds (Sialia sialis) with brighter blue structural plumage coloration were better able to regulate their microbial flora than duller males. When we sampled bluebirds in the field, individuals with brighter color had higher bacterial loads than duller individuals. In the lab, we tested whether bacteria could directly alter feather color. We found that keratinolytic bacteria increased the brightness and purity, decreased the ultraviolet chroma, and did not affect the hue of structural color. This change in spectral properties of feathers may occur through degradation of the cortex and spongy layer of structurally colored barbs. These data suggest that bacteria can alter structural plumage color through degradation.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources