Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan:169 Suppl 1:S7-26.
doi: 10.1086/510141.

Avian visual pigments: characteristics, spectral tuning, and evolution

Affiliations

Avian visual pigments: characteristics, spectral tuning, and evolution

Nathan S Hart et al. Am Nat. 2007 Jan.

Abstract

Birds are highly visual animals with complex visual systems. In this article, we discuss the spectral characteristics and genetic mechanisms of the spectral tuning of avian visual pigments. The avian retina contains a single type of rod, four spectrally distinct types of single cone, and a single type of double cone photoreceptor. Only the single cones are thought to be involved in color discrimination; double cones are thought to be involved in achromatic visual tasks, such as movement detection and pattern recognition. Visual pigment opsin protein genes in birds are orthologous to those in other vertebrates and have a common origin early in vertebrate evolution. Mechanisms of spectral tuning in the different classes of avian cone visual pigments show similarities in most instances to those in other vertebrates. The exception is the ultraviolet/violet (SWS1) class of pigments; phylogenetic evidence indicates that the ancestral vertebrate SWS1 pigment was ultraviolet sensitive (UVS), with different molecular mechanisms accounting for the generation of violet-sensitive (VS) pigments in different vertebrate classes. In birds, however, UVS visual pigments have re-evolved from an ancestral avian VS pigment by using a novel molecular mechanism not seen in other vertebrate classes. This has occurred independently in four of the 14 avian orders examined to date, although the adaptive significance of this is currently unknown.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources