Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2009;13(3):R66.
doi: 10.1186/cc7871. Epub 2009 May 10.

Changes in regional distribution of lung sounds as a function of positive end-expiratory pressure

Affiliations
Randomized Controlled Trial

Changes in regional distribution of lung sounds as a function of positive end-expiratory pressure

Shaul Lev et al. Crit Care. 2009.

Abstract

Introduction: Automated mapping of lung sound distribution is a novel area of interest currently investigated in mechanically ventilated, critically ill patients. The objective of the present study was to assess changes in thoracic sound distribution resulting from changes in positive end-expiratory pressure (PEEP). Repeatability of automated lung sound measurements was also evaluated.

Methods: Regional lung sound distribution was assessed in 35 mechanically ventilated patients in the intensive care unit (ICU). A total of 201 vibration response imaging (VRI) measurements were collected at different levels of PEEP between 0 and 15 cmH2O. Findings were correlated with tidal volume, oxygen saturation, airway resistance, and dynamic compliance. Eighty-two duplicated readings were performed to evaluate the repeatability of the measurement.

Results: A significant shift in sound distribution from the apical to the diaphragmatic lung areas was recorded when increasing PEEP (paired t-tests, P < 0.05). In patients with unilateral lung pathology, this shift was significant in the diseased lung, but not as pronounced in the other lung. No significant difference in lung sound distribution was encountered based on level of ventilator support needed. Decreased lung sound distribution in the base was correlated with lower dynamic compliance. No significant difference was encountered between repeated measurements.

Conclusions: Lung sounds shift towards the diaphragmatic lung areas when PEEP increases. Lung sound measurements are highly repeatable in mechanically ventilated patients with various lung pathologies. Further studies are needed in order to fully appreciate the contribution of PEEP increase to diaphragmatic sound redistribution.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic diagram describing the elements of the system. The patient lies on the acoustic sensor array and the flow sensor is inserted in the breathing circuit. The vibration response imaging (VRI) system collects acoustic information simultaneously from the sensor array and pressure and flow waveforms from the ventilator.
Figure 2
Figure 2
An example of acoustic data as displayed for a recording obtained from a 77-year-old male with myasthenia gravis. A representative peak-inspiratory image (left panel); synchronized sound energy graph and ventilator airway pressure and flow waveforms (middle panel); sound energy distribution in the six lung regions as automatically provided by the software in percentage of weighted pixel count (right panel). VRI = vibration response imaging.
Figure 3
Figure 3
Mean ± standard deviation of sound energy distribution in 34 mechanically-ventilated patients recorded at three levels of PEEP (0, 5 and 10 cmH2O). Significant P values are indicated (paired t-tests). LL = lower left; LR = lower right; ML = middle left; MR = middle right; PEEP = positive end-expiratory pressure; UL = upper left; UR = upper right.
Figure 4
Figure 4
Individual sound energy distribution in diaphragmatic lung areas in 34 mechanically-ventilated patients recorded at PEEP levels 0 and 10 cmH2O. Sound energy distribution increased from 17 ± 11% to 23 ± 12% (P < 0.0001) in (a) 26 'responder' patients and decreased from 30 ± 17% to 27 ± 17% (P < 0.001) in (b) eight 'non-responder' patients. PEEP = positive end-expiratory pressure.
Figure 5
Figure 5
Representative frames (or maps) at peak-inspiratory flow obtained from five individual patients at PEEP levels 0, 5, 10 and 15 cmH2O. (a) A 74-year-old female with respiratory failure. (b) A 19-year-old male with right pneumothorax. (c) A 83-year-old male with sternal wound infection. (d) A 77-year-old male with myasthenia gravis. (e) A 57-year-old male with acute pancreatitis. PEEP = positive end-expiratory pressure.
Figure 6
Figure 6
Representative frames (or maps) at peak-inspiratory flow obtained from two patients ventilated with different ventilator settings. (a) A 72-year-old female with chronic obstructive pulmonary disease recorded at positive end-expiratory pressure (PEEP) level of 5 cmH2O and at two levels of tidal volume (VT; left = 330 mL, right = 560 mL); (b) A 24-year-old male with bilateral chest contusion recorded at PEEP level of 7 cmH2O, VT of 600 mL and at two levels of respiratory rate (RR) and inspiratory/expiratory ratio (i:e; left: i:e = 2:3 and RR = 12 breaths/minute, right: i:e = 5:2 and RR = 16 breaths/minute). TL = total left lung; TR = total right lung.

Comment in

References

    1. Leblanc P, Macklem PT, Ross WR. Breath sounds and distribution of pulmonary ventilation. Am Rev Respir Dis. 1970;102:10–16. - PubMed
    1. Ploy-Song-Sang Y, Martin RR, Ross WR, Loudon RG, Macklem PT. Breath sounds and regional ventilation. Am Rev Respir Dis. 1977;116:187–199. - PubMed
    1. Ploy-Song-Sang Y, Macklem PT, Ross WR. Distribution of regional ventilation measured by breath sounds. Am Rev Respir Dis. 1978;117:657–664. - PubMed
    1. Kraman SS. The relationship between airflow and lung sound amplitude in normal subjects. Chest. 1984;86:225–229. doi: 10.1378/chest.86.2.225. - DOI - PubMed
    1. Gavriely N, Cugell DW. Airflow effects on amplitude and spectral content of normal breath sounds. J Appl Physiol. 1996;80:5–13. - PubMed

Publication types

LinkOut - more resources