Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;41(2):297-315.
doi: 10.2170/jjphysiol.41.297.

Kinetics of the Ca(2+)-activated K+ channel in rat hippocampal neurons

Affiliations
Free article

Kinetics of the Ca(2+)-activated K+ channel in rat hippocampal neurons

A Yoshida et al. Jpn J Physiol. 1991.
Free article

Abstract

The kinetics of the large-conductance Ca(2+)-activated K+ channel (235 pS in symmetrical 150 mM K+) were examined in the inside-out mode of the patch clamp technique. The open probability of the channel increased when [Ca2+]i, [Sr2+]i, or [Ba2+]i was increased. The [Ca2+]i-response relation was fitted with a Hill coefficient of 2 and half-maximum concentrations of 185, 80, 14.5, and 5.5 microM at -40, -20, +20, and +40 mV, respectively. The channel was blocked by TEA or Ba2+. The open-time histogram showed a single exponential component and the closed-time histogram showed at least two exponential components at various [Ca2+]i. Increasing [Ca2+]i decreased the time constant of the slow component of the closed-time histogram. Cell-attached patch recording revealed activation of the large-conductance Ca(2+)-activated K+ channel (BK channel) during the action potential. The deactivation time course was consistent with the fast after-hyperpolarization. A minimum model of the channel, close(2)-close(1)-open, where the transition from close(2) to close(1) requires the binding of 2 Ca2+, reconstructed quick activation of the channel if [Ca2+]i of 40 microM was assumed.

PubMed Disclaimer

Publication types

LinkOut - more resources