Inhibitory spillover: intentional motor inhibition produces incidental limbic inhibition via right inferior frontal cortex
- PMID: 19426813
- PMCID: PMC2700187
- DOI: 10.1016/j.neuroimage.2009.04.084
Inhibitory spillover: intentional motor inhibition produces incidental limbic inhibition via right inferior frontal cortex
Abstract
Neurocognitive studies have observed rIFC involvement in motor, cognitive, and affective inhibition, suggesting that rIFC is a common inhibitory mechanism across psychological domains. If true, intentional inhibition in one domain may have unintended inhibitory effects ("spillover") in other domains. The present study used an emotional go/no-go task that produces responses in both motor and affective domains, but induces intentional inhibition in only the motor domain. Data support the hypothesis that intentional inhibition in the motor domain, via rIFC, produces inhibitory spillover in the affective domain. Specifically, we observed increased rIFC along with reduced amygdala activity when participants intentionally inhibited motor responses during the presentation of negatively-valenced stimuli, and greater inverse connectivity between these regions during motor inhibition in a PPI analysis. Given the absence of intentional affect regulation, these results suggest that intentional inhibition of a motor response dampens the amygdala activation coincident with affective stimuli to the extent that rIFC activation is higher.
Figures




References
-
- Anderson MC, Green C. Suppressing unwanted memories by executive control. Nature. 2001;410(6826):366–369. - PubMed
-
- Aron AR, Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci. 2003;6(2):115–116. - PubMed
-
- Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8(4):170–177. - PubMed
-
- Baumeister RF, Bratslavsky E, Muraven M, Tice DM. Ego depletion: Is the active self a limited resource? Journal of Personality and Social Psychology. 1998;74(5):1252–1265. - PubMed
-
- Chambers CD, Bellgrove MA, Stokes MG, Henderson TR, Garavan H, Robertson IH, et al. Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci. 2006;18(3):444–455. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical