Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion
- PMID: 19429036
- DOI: 10.1016/j.neulet.2009.02.027
Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion
Abstract
Neurotrophic factors are used for the experimental treatment of neurological disorders, such as Alzheimer's disease. However, delivery of the neurotrophic factors into the brain remains a big challenge. Recombinant human nerve growth factor (NGF)-loaded microspheres were fabricated and characterized in vitro and in vivo in our previous study. The present study was to assess the therapeutic benefit of rhNGF-loaded microspheres in treating the rat model of Alzheimer's disease with fimbria-fornix lesion. Recombinant human NGF-loaded microspheres were implanted into the basal forebrain of the rats with fimbria-fornix lesion. Four weeks after implantation in the basal forebrain, immunohistochemical analysis showed that rhNGF-loaded microspheres had a significant effect on the survival of axotomized cholinergic neurons in the medial septum (MS) and vertical diagonal branch (VDB) (p<0.05). Y-maze tests showed rhNGF-loaded microspheres can significantly improve the ability of spatial learning and memory of the rats with fimbria-fornix lesion (p<0.05). These results indicate that rhNGF-loaded microspheres are an effective means for the treatment of Alzheimer's disease.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
