Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 May 8;372(1-2):147-53.
doi: 10.1016/j.ijpharm.2009.01.004. Epub 2009 Jan 17.

Forces between insulin microspheres and polymers surfaces for a dry powder inhaler

Affiliations
Comparative Study

Forces between insulin microspheres and polymers surfaces for a dry powder inhaler

Steve C Strathmann et al. Int J Pharm. .

Abstract

Here we demonstrate the use of a colloidal probe atomic force microscope (AFM) to compare the interactions between a model protein microsphere (insulin) and a set of common device polymers (polytetrafluoroethylene, polyethylene and polypropylene) with and without antistatic additive. For inhalation-based delivery devices the solid protein microspheres will interact with the device surfaces under ambient atmospheric conditions, and as such we studied the particle device interaction at a range of relative humidities. The results clearly discriminate between the five different polymer choices, and the impact of the antistatic additive. Although the mechanistic understanding is incomplete, it is evident that the polypropylene with antistatic additive gives consistent and relatively small interaction forces over the entire humidity range. The other polymer surfaces have humidity ranges where the pull-off forces are substantially greater. At 80% relative humidity, the insulin-polymer adhesion forces were similar for all the polymers probably due to the dominance of static charge mitigation and surface hydration effects. Overall, direct measurement of adhesion forces between pharmaceutical microspheres and container substrates can help direct rational choice of plastics/coatings for medical devices.

PubMed Disclaimer

Publication types