CO(2) uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring
- PMID: 19429558
- PMCID: PMC2704841
- DOI: 10.1128/AEM.02751-08
CO(2) uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring
Abstract
Carbon fixation at temperatures above 73 degrees C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (S(o) floc) at the source of Dragon Spring (73 degrees C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO(2) uptake of 21.3 +/- 11.9 microg of C 10(7) cells(-1) h(-1). When extrapolated over the estimated total quantity of S(o) floc at the spring's source, the S(o) floc-associated microbial community accounted for the uptake of 121 mg of C h(-1) at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO(2) by the S(o) floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the S(o) floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO(2) in this geothermal habitat.
Figures




Similar articles
-
Comparative genomic analysis of phylogenetically closely related Hydrogenobaculum sp. isolates from Yellowstone National Park.Appl Environ Microbiol. 2013 May;79(9):2932-43. doi: 10.1128/AEM.03591-12. Epub 2013 Feb 22. Appl Environ Microbiol. 2013. PMID: 23435891 Free PMC article.
-
Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.Appl Environ Microbiol. 2008 Feb;74(4):942-9. doi: 10.1128/AEM.01200-07. Epub 2007 Dec 14. Appl Environ Microbiol. 2008. PMID: 18083851 Free PMC article.
-
Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park.Geobiology. 2013 Nov;11(6):549-69. doi: 10.1111/gbi.12051. Epub 2013 Aug 28. Geobiology. 2013. PMID: 23981055
-
Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming.Appl Environ Microbiol. 2009 Apr;75(8):2464-75. doi: 10.1128/AEM.01802-08. Epub 2009 Feb 13. Appl Environ Microbiol. 2009. PMID: 19218404 Free PMC article.
-
A Monte Carlo based approach to the resource assessment of Jamaica's geothermal energy potential.Philos Trans A Math Phys Eng Sci. 2022 Apr 18;380(2221):20210133. doi: 10.1098/rsta.2021.0133. Epub 2022 Feb 28. Philos Trans A Math Phys Eng Sci. 2022. PMID: 35220767 Review.
Cited by
-
Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile.Appl Environ Microbiol. 2018 May 31;84(12):e00334-18. doi: 10.1128/AEM.00334-18. Print 2018 Jun 15. Appl Environ Microbiol. 2018. PMID: 29625980 Free PMC article.
-
Community microrespirometry and molecular analyses reveal a diverse energy economy in Great Boiling Spring and Sandy's Spring West in the U.S. Great Basin.Appl Environ Microbiol. 2013 May;79(10):3306-10. doi: 10.1128/AEM.00139-13. Epub 2013 Mar 8. Appl Environ Microbiol. 2013. PMID: 23475616 Free PMC article.
-
Chemolithotrophic primary production in a subglacial ecosystem.Appl Environ Microbiol. 2014 Oct;80(19):6146-53. doi: 10.1128/AEM.01956-14. Epub 2014 Aug 1. Appl Environ Microbiol. 2014. PMID: 25085483 Free PMC article.
-
Carbon source preference in chemosynthetic hot spring communities.Appl Environ Microbiol. 2015 Jun;81(11):3834-47. doi: 10.1128/AEM.00511-15. Epub 2015 Mar 27. Appl Environ Microbiol. 2015. PMID: 25819970 Free PMC article.
-
A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing.PLoS One. 2013;8(1):e53350. doi: 10.1371/journal.pone.0053350. Epub 2013 Jan 9. PLoS One. 2013. PMID: 23326417 Free PMC article.
References
-
- Boyd, E. S., D. E. Cummings, and G. G. Geesey. 2007. Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb. Ecol. 54:170-182. - PubMed
-
- Boyd, E. S., R. A. Jackson, G. Encarnacion, J. A. Zahn, T. Beard, W. D. Leavitt, Y. Pi, C. L. Zhang, A. Pearson, and G. G. Geesey. 2007. Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride geothermal springs in Yellowstone National Park. Appl. Environ. Microbiol. 73:6669-6677. - PMC - PubMed
-
- Brock, T. D. 1967. Life at high temperatures. Science 158:1012-1019. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous