Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 15;92(4):1538-51.
doi: 10.1002/jbm.a.32478.

Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components

Affiliations

Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components

Jean Heuts et al. J Biomed Mater Res A. .

Abstract

Unmodified and GRGDS peptide-modified six arm PEG star based hydrogels (Star PEG) have been applied as a multifunctional, easy to handle coating system for textile polyvinylidene fluoride (PVDF) structures, which prevent unspecific protein and cell adsorption and control-specific cell adhesion. The reactive isocyanate-terminated Star PEG has been successfully applied to ammonia-plasma treated two- and three-dimensional PVDF surfaces. Easy modification of the surface hydrogel by mixing in of GRGDS peptide during the coating step or subsequent coupling of GRGDS was determined by TOF-SIMS. Unmodified and GRGDS-functionalized hydrogel surfaces show distinct protein repellency, as demonstrated by fluorescence microscopy after incubation with fluorescent labeled proteins and Surface MALDI-TOF-Mass Spectroscopy. Cell culture experiments with primary human dermal fibroblasts, primary fetal rat fibroblasts, and human osteoblasts on GRGDS and/or KRSR Star PEG-modified two- and three-dimensional substrates show advancement in cell adhesion and proliferation compared with untreated PVDF surfaces, whereas pure star PEG-coated surfaces show no cell adhesion. The combination of protein and cell repellent properties with specific biofunctionality and easy application of the coatings will enable their application for 3D-scaffolds.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources