Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep 1;78(5):504-13.
doi: 10.1016/j.bcp.2009.05.006. Epub 2009 May 9.

STIM1 but not STIM2 is an essential regulator of Ca2+ influx-mediated NADPH oxidase activity in neutrophil-like HL-60 cells

Affiliations

STIM1 but not STIM2 is an essential regulator of Ca2+ influx-mediated NADPH oxidase activity in neutrophil-like HL-60 cells

S Bréchard et al. Biochem Pharmacol. .

Abstract

Extracellular Ca2+ entry, primarily mediated through store-operated Ca2+ entry (SOCE), is known to be a critical event for NADPH oxidase (NOX2) regulation in neutrophils. While defective NOX2 activity has been linked to various inflammatory diseases, regulatory mechanisms that control Ca2+ influx-induced NOX2 activation are poorly understood in SOCE. The role of STIM1, a Ca2+ sensor that transduces the store depletion signal to the plasma membrane, seems well established and supported by numerous studies in non-phagocytic cells. Here, in neutrophil-like HL-60 cells we used a siRNA approach to delineate the effect of STIM1 knock-down on NOX2 activity regulated by Ca2+ influx. Because the function of the STIM1 homolog, STIM2, is still unclear, we determined the consequence of STIM2 knock-down on Ca2+ and NOX2. STIM1 and STIM2 knock-down was effective and isoform specific when assayed by real-time PCR and Western blotting. Consistent with a unique role of STIM1 in the regulation of SOCE, STIM1, but not STIM2, siRNA significantly decreased Ca2+ influx induced by fMLF or the SERCA pump inhibitor thapsigargin. A redistribution of STIM1, originally localized intracellularly, near the plasma membrane was observed by confocal microscopy upon stimulation by fMLF. Inhibition of STIM1-induced SOCE led to a marked decrease in NOX2 activity while STIM2 siRNA had no effect. Thus, our results provide evidence for a role of STIM1 protein in the control of Ca2+ influx in neutrophils excluding a STIM2 involvement in this process. It also places STIM1 as a key modulator of NOX2 activity with a potential interest for anti-inflammatory pharmacological development.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources