Lowering plasma cholesterol levels halts progression of aortic valve disease in mice
- PMID: 19433756
- PMCID: PMC2740986
- DOI: 10.1161/CIRCULATIONAHA.108.834614
Lowering plasma cholesterol levels halts progression of aortic valve disease in mice
Abstract
Background: Treatment of hyperlipidemia produces functional and structural improvements in atherosclerotic vessels. However, the effects of treating hyperlipidemia on the structure and function of the aortic valve have been controversial, and any effects could be confounded by pleiotropic effects of hypolipidemic treatment. The goal of this study was to determine whether reducing elevated plasma lipid levels with a "genetic switch" in Reversa mice (Ldlr-/-/Apob(100/100)/Mttp(fl/fl)/Mx1-Cre+/+) reduces oxidative stress, reduces pro-osteogenic signaling, and retards the progression of aortic valve disease.
Methods and results: After 6 months of hypercholesterolemia, Reversa mice exhibited increases in superoxide, lipid deposition, myofibroblast activation, calcium deposition, and pro-osteogenic protein expression in the aortic valve. Maximum aortic valve cusp separation, as judged by echocardiography, was not altered. During an additional 6 months of hypercholesterolemia, superoxide levels, valvular lipid deposition, and myofibroblast activation remained elevated. Furthermore, calcium deposition and pro-osteogenic gene expression became more pronounced, and the aortic cusp separation decreased from 0.85+/-0.04 to 0.70+/-0.04 mm (mean+/-SE; P<0.05). Rapid normalization of cholesterol levels at 6 months of age (by inducing expression of Cre recombinase) normalized aortic valve superoxide levels, decreased myofibroblast activation, reduced valvular calcium burden, suppressed pro-osteogenic signaling cascades, and prevented reductions in aortic valve cusp separation.
Conclusions: Collectively, these data indicate that reducing plasma lipid levels by genetic inactivation of the mttp gene in hypercholesterolemic mice with early aortic valve disease normalizes oxidative stress, reduces pro-osteogenic signaling, and halts the progression of aortic valve stenosis.
Figures
Comment in
-
Lipid lowering in aortic stenosis: still some light at the end of the tunnel?Circulation. 2009 May 26;119(20):2653-5. doi: 10.1161/CIRCULATIONAHA.109.864421. Circulation. 2009. PMID: 19470899 Review. No abstract available.
References
-
- Bonow RO, Carabello B, de Leon AC, Edmunds LH, Jr, Fedderly BJ, Freed MD, Gaasch WH, McKay CR, Nishimura RA, O'Gara PT, O'Rourke RA, Rahimtoola SH, Ritchie JL, Cheitlin MD, Eagle KA, Gardner TJ, Garson A, Jr, Gibbons RJ, Russell RO, Ryan TJ, Smith SC., Jr ACC/AHA Guidelines for the Management of Patients With Valvular Heart Disease. Executive Summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease) J Heart Valve Dis. 1998;7:672–707. - PubMed
-
- Messika-Zeitoun D, Bielak LF, Peyser PA, Sheedy PF, Turner ST, Nkomo VT, Breen JF, Maalouf J, Scott C, Tajik AJ, Enriquez-Sarano M. Aortic valve calcification: determinants and progression in the population. Arterioscler Thromb Vasc Biol. 2007;27:642–648. - PubMed
-
- Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90:844–853. - PubMed
-
- Kaden JJ, Vocke DC, Fischer CS, Grobholz R, Brueckmann M, Vahl CF, Hagl S, Haase KK, Dempfle CE, Borggrefe M. Expression and activity of matrix metalloproteinase-2 in calcific aortic stenosis. Z Kardiol. 2004;93:124–130. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
