Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 May:42 Suppl 1:S144-52.
doi: 10.1055/s-0029-1216345. Epub 2009 May 11.

Computational approaches to the neurobiology of drug addiction

Affiliations
Review

Computational approaches to the neurobiology of drug addiction

S H Ahmed et al. Pharmacopsychiatry. 2009 May.

Abstract

To increase our understanding of drug addiction--notably its pharmacological and neurobiological determinants--researchers have begun to formulate computational models of drug self-administration. Currently, one can roughly distinguish between three classes of models which all have in common to attribute to brain dopamine signaling a key role in addiction. The first class of models contains quantitative pharmacological models that describe the influence of pharmacokinetic and pharmacodynamic factors on drug self-administration. These models fail, however, to explain how the drug self-administration behavior is acquired and how it eventually becomes rigid and compulsive with extended drug use. Models belonging to the second class circumvent some of these limitations by modeling how drug use usurps the function of dopamine in reinforcement learning and action selection. However, despite their behavioral plausibility, these latter models lack neurobiological plausibility and ignore the potential role of opponent processes in addiction. The third class of models attempts to surmount these pitfalls by providing a more realistic picture of the midbrain dopamine circuitry and of the complex action of drugs of abuse in the output of this circuitry. Here we provide a brief overview of these different models to illustrate the potential contribution of mathematical modeling to our understanding of the neurobiology of drug addiction.

PubMed Disclaimer

Publication types