Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jun 24;57(12):5194-200.
doi: 10.1021/jf9005593.

Beta-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions

Affiliations
Comparative Study

Beta-triketone inhibitors of plant p-hydroxyphenylpyruvate dioxygenase: modeling and comparative molecular field analysis of their interactions

Franck E Dayan et al. J Agric Food Chem. .

Abstract

p-Hydroxyphenylpyruvate dioxygenase (HPPD) is the target site of beta-triketone herbicides in current use. Nineteen beta-triketones and analogues, including the naturally occurring leptospermone and grandiflorone, were synthesized and tested as inhibitors of purified Arabidopsis thaliana HPPD. The most active compound was a beta-triketone with a C(9) alkyl side chain, not reported as natural, which inhibited HPPD with an I(50) of 19 +/- 1 nM. This is significantly more active than sulcotrione, which had an I(50) of 250 +/- 21 nM in this assay system. The most active naturally occurring beta-triketone was grandiflorone, which had an I(50) of 750 +/- 70 nM. This compound is of potential interest as a natural herbicide because it can be extracted with good yield and purity from some Leptospermum shrubs. Analogues without the 1,3-diketone group needed to interact with Fe(2+) at the HPPD active site were inactive (I(50)s > 50 microM), as were analogues with prenyl or ethyl groups on the triketone ring. Modeling of the binding of the triketones to HPPD, three-dimensional QSAR analysis using CoMFA (comparative molecular field analysis), and evaluation of the hydrophobic contribution with HINT (hydropathic interactions) provided a structural basis to describe the ligand/receptor interactions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources