Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb 10;110(2):624-55.
doi: 10.1021/cr900005n.

Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation

Affiliations
Review

Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation

Denise A Colby et al. Chem Rev. .
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Modes of heteroatom-assisted C-H bond activation
Figure 2
Figure 2
Mechanistic proposal involving two-point binding of the olefin
Figure 3
Figure 3
Recyclable catalyst system for ortho-alkylation
Figure 4
Figure 4
Retrosynthesis of 38
Figure 5
Figure 5
Phosphoramidite ligands for enantioselective olefin hydroarylation
Figure 6
Figure 6
Cyclization of isomeric substrates 5860
Figure 7
Figure 7
Retrosynthetic analysis of the key step in the synthesis of 62
Figure 8
Figure 8
Retrosynthesis of (−)-incarvillateine 154
Figure 9
Figure 9
X-ray crystal structure (ORTEP diagram) of 165 with thermal ellipsoids drawn at the 50% probability level. Hydrogen atoms distant from the metal center have been omitted for clarity.
Figure 10
Figure 10
Methylation of 170. ORTEP diagram of 171 with thermal ellipsoids drawn at the 50% probability level.
Figure 11
Figure 11
Retrosynthesis of JNK3 inhibitors 181ac
Figure 12
Figure 12
Cy-Phob ligands
Figure 13
Figure 13
Isolated Rh-NHC complexes
Scheme 1
Scheme 1
Mechanism of chelation-assisted C-H alkylation
Scheme 2
Scheme 2
Hydroacylation and ortho-alkylation of aryl aldehydes
Scheme 3
Scheme 3
The synthesis of a mescaline analogue via tandem olefin hydroarylation
Scheme 4
Scheme 4
Cyclization of 42 and completion of the synthesis of (+)-lithospermic acid
Scheme 5
Scheme 5
Synthesis and racemic cyclization of 64
Scheme 6
Scheme 6
Enantioselective cyclization and synthesis of 62
Scheme 7
Scheme 7
Mechanism of the formation of 81 and 82
Scheme 8
Scheme 8
A plausible mechanism for Rh-catalyzed isocoumarin synthesis
Scheme 9
Scheme 9
Tandem cycloisomerization/C-H activation
Scheme 10
Scheme 10
Mechanism for C-H activation/cycloisomerization tandem
Scheme 11
Scheme 11
Mechanism for the β-alkylation of 145
Scheme 12
Scheme 12
Synthesis of 154
Scheme 13
Scheme 13
Possible reaction pathways for 168
Scheme 14
Scheme 14
Synthesis of 181a
Scheme 15
Scheme 15
Synthesis of 181b and c
Scheme 16
Scheme 16
Attempted synthesis of vasicoline
Scheme 17
Scheme 17
Synthesis of vasicoline
Scheme 18
Scheme 18
Mechanistic proposal excluding an NHC intermediate
Scheme 19
Scheme 19
Proposed mechanism for hydrodehalogenation
Scheme 20
Scheme 20
Arylation of electron-rich arenes
Chart 1
Chart 1
Intramolecular alkylation of aryl ketimines
Chart 2
Chart 2
Asymmetric cyclization of chiral imines
Chart 3
Chart 3
ortho-Alkenylation of 2-phenylpyridines
Chart 4
Chart 4
N-Directed alkenylation with triisopropylsilylacetylene
Chart 5
Chart 5
Oxidative coupling of benzoic acids to alkynes
Chart 6
Chart 6
Pyridyl-directed arylation using acid chlorides
Chart 7
Chart 7
Oxidative arylation of 2-arylpyridines
Chart 8
Chart 8
Phenol arylation
Chart 9
Chart 9
Carbonylation of N-arylpyrazoles
Chart 10
Chart 10
Carbonylation of 2-arylpyridines
Chart 11
Chart 11
Oxidative carbonylation of arenes
Chart 12
Chart 12
Tandem C-H activation/cycloisomerization
Chart 13
Chart 13
Dihydropyridine synthesis from imines and alkynesa aYields determined by NMR integration relative to 2,6-dimethoxytoluene as an internal standard.
Chart 14
Chart 14
One-pot synthesis of pyridines from imines and alkynes a aYields given are isolated yields based on starting imine.
Chart 15
Chart 15
Pyridine synthesis from ketoximes and alkynes
Chart 16
Chart 16
Substrate scope for intermolecular azole alkylation a[HPCy3]Cl was used in place of PCy3 and lutidinium chloride.
Chart 17
Chart 17
Substrate scope in 4,4-dimethyloxazoline alkylation
Chart 18
Chart 18
Dihydroquinazoline alkylation
Chart 19
Chart 19
Investigation of olefin scope for quinoline alkylation
Chart 20
Chart 20
Arylation of N-heterocycles
Chart 21
Chart 21
Scope in heterocycle
Chart 22
Chart 22
Improved scope with ligand 248
Chart 23
Chart 23
Rh-catalyzed indole arylation
Chart 24
Chart 24
Arylation of electron-rich heteroarenes
Chart 25
Chart 25
Scope in pyridine and quinoline arylation
Chart 26
Chart 26
Scope in arene for quinoline arylation

References

    1. For reviews on C-H bond functionalization, see the following and leading references therein: Dyker G. Angew Chem Int Ed. 1999;38:1698.Kakiuchi F, Murai S. Top Organomet Chem. 1999;3:47.Ritleng V, Sirlin C, Pfeffer M. Chem Rev. 2002;102:1731.Jun CH, Moon CW, Lee H, Lee DY. J Mol Cat A. 2002;189:145.Kakiuchi F, Murai S. Acc Chem Res. 2002;35:826.Miura M, Nomura M. Top Curr Chem. 2002;219:212.Kakiuchi F, Chatani N. Adv Synth Catal. 2003;345:1077.Park YJ, Jun CH. Bull Korean Chem Soc. 2005;26:871.Kakiuchi F. Top Organomet Chem. 2007;24:1.Seregin IV, Gevorgyan V. Chem Soc Rev. 2007;36:1173.Lewis JC, Bergman RG, Ellman JA. Acc Chem Res. 2008;41:1013.Kakiuchi F, Kochi T. Synthesis. 2008:3013.

    1. de Meijere A, Diederich F, editors. Metal-Catalyzed Cross-Coupling Reactions. Wiley-VCH; Weinheim: 2004.
    1. For examples of sterically-driven selectivity, see: Cho J-Y, Iverson CN, Smith MR. J Am Chem Soc. 2000;122:12868.Ishiyama T, Takagi J, Kousaku I, Miyaura N, Anastasi NR, Hartwig JF. J Am Chem Soc. 2002;124:390.For examples of selectivity based on C-H acidity, see: Lafrance M, Rowley CN, Woo TK, Fagnou K. J Am Chem Soc. 2006;128:8754.Garcia-Cuadrado D, Braga AAC, Maseras F, Echavarren AM. J Am Chem Soc. 2006;128:1066.For examples of selectivity based on electron-donating substituents, see: Jia CG, Piao DG, Oyamada JZ, Lu WJ, Kitamura T, Fujiwara Y. Science. 2000;287:1992.Tunge JA, Foresee LN. Organometallics. 2005;24:6440.Stuart DR, Villemure E, Fagnou K. J Am Chem Soc. 2007;129:12072.Stuart DR, Fagnou K. Science. 2007;316:1172.

    1. For examples of the application of C-H bond activation in target-oriented synthesis, see: Harris PWR, Woodgate PD. J Organomet Chem. 1997;530:211.Johnson JA, Sames D. J Am Chem Soc. 2000;122:6321.When PM, DuBois J. J Am Chem Soc. 2002;124:12950.Hinman A, DuBois JH. J Am Chem Soc. 2003;125:11510.Leblanc M, Fagnou K. Org Lett. 2005;7:2849.Davies HML, Dai X, Long MS. J Am Chem Soc. 2006;128:2485.Liu Y, Xiao W, Wong MK, Che CM. Org Lett. 2007;9:4107.For reviews see ref 26a and: Godula K, Sames D. Nature. 2006;312:67.Lafrance M, Blaquiere N, Fagnou K. Eur J Org Chem. 2007:811.

    1. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature. 1993;366:529.

Publication types