Mechanisms of bone metastases of breast cancer
- PMID: 19443538
- PMCID: PMC2914697
- DOI: 10.1677/ERC-09-0012
Mechanisms of bone metastases of breast cancer
Abstract
Cancer development is a multi-step process driven by genetic alterations that elicit the progressive transformation of normal human cells into highly malignant derivatives. The altered cell proliferation phenotype of cancer involves a poorly characterized sequence of molecular events, which often result in the development of distant metastasis. In the case of breast cancer, the skeleton is among the most common of metastatic sites. In spite of its clinical importance, the underlying cellular and molecular mechanisms driving bone metastasis remain elusive. Despite advances in our understanding of the phenotype of cancer cells, the increased focus on the contribution of the tumor microenvironment and the recent revival of interest in the role of tumor-propagating cells (so called cancer stem cells) that may originate or be related to normal stem cells produced in the bone marrow, many important questions remain unanswered. As such, a more complete understanding of the influences of both the microenvironment and the tumor phenotype, which impact the entire multi-step metastatic cascade, is required. In this review, the importance of tumor heterogeneity, tumor-propagating cells, the microenvironment of breast cancer metastasis to bone as well as many current endocrine therapies for the prevention and treatment of metastatic breast cancer is discussed.
Conflict of interest statement
Figures
References
-
- Adams JM, Strasser A. Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res. 2008;68:4018–4021. - PubMed
-
- Anderson WF, Chatterjee N, Ershler WB, Brawley OW. Estrogen receptor breast cancer phenotypes in the Surveillance, Epidemiology, and End Results database. Breast Cancer Res Treat. 2002;76:27–36. - PubMed
-
- Bendre M, Gaddy D, Nicholas RW, Suva LJ. Breast cancer metastasis to bone: it is not all about PTHrP. Clin Orthop Relat Res. 2003:S39–S45. - PubMed
-
- Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS, Wessner LL, et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res. 2005;65:11001–11009. - PubMed
-
- Bhattacharyya S, Byrum S, Siegel ER, Suva LJ. Proteomic analysis of bone cancer: a review of current and future developments. Expert Rev Proteomics. 2007;4:371–378. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
