The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs
- PMID: 19444323
- PMCID: PMC2678933
- DOI: 10.1007/s10989-005-9002-3
The Use of Phage-Displayed Peptide Libraries to Develop Tumor-Targeting Drugs
Abstract
Monoclonal antibodies have been successfully utilized as cancer-targeting therapeutics and diagnostics, but the efficacies of these treatments are limited in part by the size of the molecules and non-specific uptake by the reticuloendothelial system. Peptides are much smaller molecules that can specifically target cancer cells and as such may alleviate complications with antibody therapy. Although many endogenous and exogenous peptides have been developed into clinical therapeutics, only a subset of these consists of cancer-targeting peptides. Combinatorial biological libraries such as bacteriophage-displayed peptide libraries are a resource of potential ligands for various cancer-related molecular targets. Target-binding peptides can be affinity selected from complex mixtures of billions of displayed peptides on phage and further enriched through the biopanning process. Various cancer-specific ligands have been isolated by in vitro, in vivo, and ex vivo screening methods. As several peptides derived from phage-displayed peptide library screenings have been developed into therapeutics in current clinical trials, which validates peptide-targeting potential, the use of phage display to identify cancer-targeting therapeutics should be further exploited.
Figures



Similar articles
-
Phage display screening of therapeutic peptide for cancer targeting and therapy.Protein Cell. 2019 Nov;10(11):787-807. doi: 10.1007/s13238-019-0639-7. Epub 2019 May 28. Protein Cell. 2019. PMID: 31140150 Free PMC article. Review.
-
From combinatorial chemistry to cancer-targeting peptides.Mol Pharm. 2007 Sep-Oct;4(5):631-51. doi: 10.1021/mp700073y. Epub 2007 Sep 20. Mol Pharm. 2007. PMID: 17880166 Review.
-
Cancer-specific ligands identified from screening of peptide-display libraries.Curr Pharm Des. 2004;10(19):2335-43. doi: 10.2174/1381612043383944. Curr Pharm Des. 2004. PMID: 15279612 Review.
-
Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library.Amino Acids. 2016 Dec;48(12):2699-2716. doi: 10.1007/s00726-016-2329-6. Epub 2016 Sep 20. Amino Acids. 2016. PMID: 27650972 Review.
-
Biased selection of propagation-related TUPs from phage display peptide libraries.Amino Acids. 2017 Aug;49(8):1293-1308. doi: 10.1007/s00726-017-2452-z. Epub 2017 Jun 29. Amino Acids. 2017. PMID: 28664268 Review.
Cited by
-
Delivery of siRNA into breast cancer cells via phage fusion protein-targeted liposomes.Nanomedicine. 2011 Jun;7(3):315-23. doi: 10.1016/j.nano.2010.10.004. Epub 2010 Nov 2. Nanomedicine. 2011. PMID: 21050894 Free PMC article.
-
On the mechanism of targeting of phage fusion protein-modified nanocarriers: only the binding peptide sequence matters.Mol Pharm. 2011 Oct 3;8(5):1720-8. doi: 10.1021/mp200080h. Epub 2011 Jul 29. Mol Pharm. 2011. PMID: 21675738 Free PMC article.
-
Developing New Peptides and Peptide-Drug Conjugates for Targeting the FGFR2 Receptor-Expressing Tumor Cells and 3D Spheroids.Biomimetics (Basel). 2024 Aug 27;9(9):515. doi: 10.3390/biomimetics9090515. Biomimetics (Basel). 2024. PMID: 39329537 Free PMC article.
-
Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor-specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors.Mol Cancer Ther. 2014 Dec;13(12):2864-75. doi: 10.1158/1535-7163.MCT-14-0052. Epub 2014 Sep 19. Mol Cancer Ther. 2014. PMID: 25239936 Free PMC article.
-
Advancement and applications of peptide phage display technology in biomedical science.J Biomed Sci. 2016 Jan 19;23:8. doi: 10.1186/s12929-016-0223-x. J Biomed Sci. 2016. PMID: 26786672 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nbt1137', 'is_inner': False, 'url': 'https://doi.org/10.1038/nbt1137'}, {'type': 'PubMed', 'value': '16151408', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16151408/'}]}
- Adams G. P., Weiner L. M., (2005). Nat. Biotechnol. 23: 1147–1157 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '11406547', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11406547/'}]}
- Adams G. P., Schier R., McCall A. M., et al. (2001). Cancer Res. 61: 4750–4755 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/j.copbio.2004.10.007', 'is_inner': False, 'url': 'https://doi.org/10.1016/j.copbio.2004.10.007'}, {'type': 'PubMed', 'value': '15560988', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15560988/'}]}
- Adermann K., John H., Standker L., Forssmann W. G., (2004). Curr. Opin. Biotechnol. 15: 599–606 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.2174/0929867024606731', 'is_inner': False, 'url': 'https://doi.org/10.2174/0929867024606731'}, {'type': 'PubMed', 'value': '11966456', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/11966456/'}]}
- Adessi C., Soto C., (2002). Curr. Med. Chem. 9: 963–78 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'PubMed', 'value': '15897245', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15897245/'}]}
- Aina O. H., Marik J., Liu R., Lau D. H., Lam K. S., (2005). Mol. Cancer Ther. 4: 806–813 - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials