Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;48(25):4524-7.
doi: 10.1002/anie.200805683.

Efficient replication bypass of size-expanded DNA base pairs in bacterial cells

Affiliations

Efficient replication bypass of size-expanded DNA base pairs in bacterial cells

James C Delaney et al. Angew Chem Int Ed Engl. 2009.

Abstract

Supersize me! Size-expanded DNA bases (xDNA) are able to encode natural DNA sequences in replication. In vitro experiments with a DNA polymerase show nucleotide incorporation opposite the xDNA bases with correct pairing. In vivo experiments using E. coli show that two xDNA bases (xA and xC, see picture) encode the correct replication partners.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structures and DNA sequence in this study. A. Structures of the four xDNA bases evaluated in cellular replication, with their paired structures shown. B. DNA sequence context for xDNA bases (at position X) inserted into single-stranded M13 bacteriophage.
Figure 2
Figure 2
The efficiency of replication bypass of single xDNA bases in vivo. Bases were ligated into single-stranded M13 bacteriophage and replicated in E. coli. Bypass efficiency was measured by quantifying relative output signals from test and internal standard genomes, and normalizing to those from the G at the test site control.
Figure 3
Figure 3
The replicative encoding capability of single xDNA bases in E. coli. Shown are the relative amounts of each natural base at the test site (X) that replaced the xDNA base shown after phage replication.

Similar articles

Cited by

References

    1. Breslow R. Pure Appl Chem. 1998;70:267–270.
    2. Kool ET, Waters ML. Nat Chem Biol. 2007;3:70–73. - PubMed
    1. Murakami A, Blake KR, Miller PS. Biochemistry. 1985;24:4041–4046. - PubMed
    2. Neilsen PE, Egholm M, Berg RH, Buchardt O. Science. 1991;254:1497–1500. - PubMed
    3. Nielsen P, Pfundheller HM, Wengel J. Chem Commun. 1997:825–826.
    4. Lescrinier E, Esnouf R, Schraml J, Busson R, Heus H, Hilbers C, Herdewijn P. Chem Biol. 2000;7:719–731. - PubMed
    5. Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P, Minasov G, Dobler M, Leumann CJ, Eschenmoser A. J Am Chem Soc. 2006;128:10847–10856. - PubMed
    6. Schöning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A. Science. 2000;290:1347–1351. - PubMed
    1. Chaput JC, Szostak JW. J Am Chem Soc. 2003;125:9274–9275. - PubMed
    2. Shaw BR, Dobrikov M, Wang X, Wan J, He K, Lin JL, Li P, Rait V, Sergueeva Z, Sergueev D. Ann N Y Acad Sci. 2003;1002:12–29. - PubMed
    3. Pochet S, Kaminski PA, Van Aerschot A, Herdewijn P, Marlière P. C R Biol. 2003;326:1175–1184. - PubMed
    4. Sinha S, Kim PH, Switzer C. J Am Chem Soc. 2004;126:40–41. - PubMed
    5. Jung KH, Marx A. Cell Mol Life Sci. 2005;62:2080–2091. - PMC - PubMed
    6. Veedu RN, Vester B, Wengel J. Nucleosides Nucleotides Nucl Acids. 2007;26:1207–1210. - PubMed
    1. Piccirilli JA, Krauch T, Moroney SE, Benner SA. Nature. 1990;343:33–37. - PubMed
    2. Moran S, Ren RXF, Rumney S, Kool ET. J Am Chem Soc. 1997;119:2056–2057. - PMC - PubMed
    3. Matray TJ, Kool ET. Nature. 1999;399:704–708. - PubMed
    4. Tae EL, Wu Y, Xia G, Schultz PG, Romesberg FE. J Am Chem Soc. 2001;123:7439–7340. - PubMed
    5. Parsch J, Engels JW. Nucl Acids Res. 2001;20:815–818. - PubMed
    6. Weizman H, Tor Y. J Am Chem Soc. 2001;123:3375–3376. - PubMed
    7. Beuck C, Singh I, Bhattacharya A, Hecker W, Parmar VS, Seitz O, Weinhold E. Angew Chem Int Ed. 2003;42:3958–3960. - PubMed
    8. Paul N, Nashine VC, Hoops G, Zhang P, Zhou J, Bergstrom DE, Davisson VJ. Chem Biol. 2003;10:815–825. - PubMed
    9. Henry AA, Romesberg FE. Curr Opin Chem Biol. 2003;7:727–733. - PubMed
    10. Hirao I, Harada Y, Kimoto M, Mitsui T, Fujiwara T, Yokoyama S. J Am Chem Soc. 2004;126:13298–13305. - PubMed
    11. Zhang X, Lee I, Zhou X, Berdis AJ. J Am Chem Soc. 2006;128:143–149. - PubMed
    12. Moore CL, Zivkovic A, Engels JW, Kuchta RD. Biochemistry. 2004;43:12367–12374. - PubMed
    13. Hirao I. Curr Opin Chem Biol. 2006;10:622–627. - PubMed
    14. Zahn A, Leumann CJ. Bioorg Med Chem. 2006;14:6174–6188. - PubMed
    15. Hwang GT, Romesberg FE. J Am Chem Soc. 2008;130:14872–14882. - PMC - PubMed
    16. Hirao I, Mitsui T, Kimoto M, Yokoyama S. J Am Chem Soc. 2006;129:15549–15555. - PubMed
    17. Hikishima S, Minakawa N, Kuramoto K, Fujisawa Y, Ogawa M, Matsuda A. Angew Chem Int Ed. 2005;44:596–598. - PubMed
    18. Battersby TR, Albalos M, Friesenhahn MJ. Chem Biol. 2007;14:525–531. - PubMed
    19. Doi Y, Chiba J, Morikawa T, Inouye MJ. J Am Chem Soc. 2008;130:8762–8768. - PubMed
    1. Liu H, Gao J, Lynch SR, Maynard L, Saito D, Kool ET. Science. 2003;302:868–871. - PubMed
    2. Liu H, Gao J, Maynard L, Saito YD, Kool ET. J Am Chem Soc. 2004;126:1102–1109. - PubMed
    3. Gao J, Liu H, Kool ET. Angew Chem Int Ed. 2005;44:3118–3122. - PubMed
    4. Gao J, Liu H, Kool ET. J Am Chem Soc. 2004;126:11826–11831. - PubMed
    5. Liu H, Lynch SR, Kool ET. J Am Chem Soc. 2004;126:6900–6905. - PubMed
    6. Lynch SR, Liu H, Gao J, Kool ET. J Am Chem Soc. 2006;128:14704–14711. - PMC - PubMed

Publication types

LinkOut - more resources