Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul 22;42(10):1506-1512.
doi: 10.1016/j.jbiomech.2009.03.047. Epub 2009 May 15.

Is slow walking more stable?

Affiliations

Is slow walking more stable?

Sjoerd M Bruijn et al. J Biomech. .

Abstract

Several efforts have been made to study gait stability using measures derived from nonlinear time-series analysis. The maximum finite time Lyapunov exponent (lambda(max)) quantifies how a system responds to an infinitesimally small perturbation. Recent studies suggested that slow walking leads to lower lambda(max) values, and thus is more stable than fast walking, but these studies suffer from methodological limitations. We studied the effects of walking speed on the amount of kinematic variability and stability in human walking. Trunk motions of 15 healthy volunteers were recorded in 3D during 2 min of treadmill walking at different speeds. From those time series, maximum Lyapunov exponents, indicating short-term and long-term divergence (lambda(S-stride) and lambda(L-stride)), and mean standard deviation (MeanSD) were calculated. lambda(S-stride) showed a linear decrease with increasing speed for forward-backward (AP) movements and quadratic effects (inverted U-shaped) for medio-lateral (ML) and up-down (VT) movements. lambda(L-stride) showed a quadratic effect (inverted U-shaped) of walking speed for AP movements, a linear decrease for ML movements, and a linear increase for VT movements. Moreover, positive correlations between lambda(S) and MeanSD were found for all directions, while lambda(L-stride) and MeanSD were correlated negatively in the AP direction. The different effects of walking speed on lambda(S-stride) and lambda(L-stride) for the different planes suggest that slow walking is not necessarily more stable than fast walking. The absence of a consistent pattern of correlations between lambda(L-stride) and MeanSD over the three directions suggests that variability and stability reflect, at least to a degree, different properties of the dynamics of walking.

PubMed Disclaimer

Publication types

LinkOut - more resources