Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Jul;16(7):763-72.
doi: 10.1007/BF00965685.

Regulation of carrier-mediated and exocytotic release of [3H]GABA in rat brain synaptosomes

Affiliations

Regulation of carrier-mediated and exocytotic release of [3H]GABA in rat brain synaptosomes

C M Carvalho et al. Neurochem Res. 1991 Jul.

Abstract

In this study we investigated the role of external monovalent cations, and of intracellular Ca2+ concentration ([Ca2+]i) in polarized and depolarized rat cerebral cortex synaptosomes on the release of [3H]-gamma-aminobutyric acid (3H-GABA). We found that potassium-depolarization, in the absence of Ca2+, of synaptosomes loaded with 3H-GABA releases 7.4 +/- 2.1% of the accumulated neurotransmitter, provided that the external medium contains Na+, and an additional 19.0 +/- 2.5% is released upon adding 1.0 mM CaCl2 to the exterior. The Ca(2+)-independent release component does not occur in a choline medium and it is only 3.4 +/- 0.8% of the 3H-GABA accumulated in a Li+ medium, but both ions support the Ca(2+)-dependent release of 3H-GABA (13.4 +/- 0.6% in choline and 15.4 +/- 1.5% in Li+), which suggests that the exocytotic release is independent of the external monovalent cation present, whereas the carrier-mediated release specifically requires Na+ outside. Furthermore, previous release of the cytosolic 3H-GABA due to predepolarization in the absence of Ca2+ does not influence the amount of 3H-GABA subsequently released by exocytosis due to Ca2+ addition (19.1 +/- 2.5% or 19.1 +/- 1.1%, respectively). In choline or Li+ medium, the value of the [Ca2+]i is raised by Na+/Ca2+ exchange to 663 +/- 75 nM or 782 +/- 54 nM, respectively, within three minutes after adding 1.0 mM Ca2+, in the absence of depolarization, and parallel release experiments show no release of 3H-GABA in the choline medium, but a substantial release (7.1 +/- 2.1%) of 3H-GABA occurs in the Li+ medium without depolarization. Subsequent K(+)-depolarization shows normal Ca(2+)-dependent release of 3H-GABA in the choline medium (14.1 +/- 2.0%) but only 8.6 +/- 1.1% release in the Li+ medium, which suggests that raising the [Ca2+]i by Na+/Ca2+ exchange, without depolarization, supports some exocytotic release in Li+, but not in choline media. The role of [Ca2+]i and of membrane depolarization in the release process is discussed on the basis of the results obtained and other relevant observations which suggest that both Ca2+ and depolarization are essential for optimal exocytotic release of GABA.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Neurochem Int. 1990;17(3):401-13 - PubMed
    1. J Physiol. 1987 Jun;387:415-23 - PubMed
    1. J Neurochem. 1986 Aug;47(2):396-404 - PubMed
    1. J Membr Biol. 1979 Nov 30;50(3-4):287-310 - PubMed
    1. Trends Neurosci. 1988 Oct;11(10):458-64 - PubMed

Publication types

LinkOut - more resources