Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;132(2):222-33.
doi: 10.1016/j.clim.2009.04.002. Epub 2009 May 17.

Intravenous immunoglobulin G-mediated inhibition of T-cell proliferation reflects an endogenous mechanism by which IgG modulates T-cell activation

Affiliations

Intravenous immunoglobulin G-mediated inhibition of T-cell proliferation reflects an endogenous mechanism by which IgG modulates T-cell activation

Heather F MacMillan et al. Clin Immunol. 2009 Aug.

Abstract

Commercial intravenous immunoglobulin G (IVIG) at high doses has therapeutic benefit in autoimmune and inflammatory diseases. It has been shown to inhibit T-cell function but the mechanisms are unclear. Inhibition could result from IVIG processing, donor pooling or intrinsic downregulatory activity of IgG. To address these points, we compared the effects on T-cell activation of IVIG, Fab(2) fragment and IgG isolated from single-donor plasma. We also investigated the role of accessory cells in the IVIG effects using highly purified T cells stimulated through CD3 and CD28 engagement. T-cell proliferation was evaluated by Oregon Green 488 dye dilution and (3)H-thymidine incorporation. IVIG, Fab(2) fragment of IVIG and autologous, single-donor IgG significantly inhibited T-cell proliferation (35-50%), even in the absence of accessory cells. Depletion of IgG from plasma used for culture significantly increased (by 50%) the T-cell proliferation. The addition of physiological concentrations of single-donor, autologous IgG or IVIG to IgG-depleted plasma reduced T-cell proliferation to levels observed in normal plasma. Therefore, donor pooling in IVIG and accessory cells are not required for inhibition of T-cell proliferation by IVIG and the Fab(2) region is sufficient to mediate this inhibition. Suppression of T-cell activation by IVIG likely reflects a physiologic, endogenous mechanism of IgG-mediated regulation of T-cell activation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources