Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;18(7):1671-6.
doi: 10.1109/TIP.2009.2018015. Epub 2009 May 12.

Semi-supervised bilinear subspace learning

Semi-supervised bilinear subspace learning

Dong Xu et al. IEEE Trans Image Process. 2009 Jul.

Abstract

Recent research has demonstrated the success of tensor based subspace learning in both unsupervised and supervised configurations (e.g., 2-D PCA, 2-D LDA, and DATER). In this correspondence, we present a new semi-supervised subspace learning algorithm by integrating the tensor representation and the complementary information conveyed by unlabeled data. Conventional semi-supervised algorithms mostly impose a regularization term based on the data representation in the original feature space. Instead, we utilize graph Laplacian regularization based on the low-dimensional feature space. An iterative algorithm, referred to as adaptive regularization based semi-supervised discriminant analysis with tensor representation (ARSDA/T), is also developed to compute the solution. In addition to handling tensor data, a vector-based variant (ARSDA/V) is also presented, in which the tensor data are converted into vectors before subspace learning. Comprehensive experiments on the CMU PIE and YALE-B databases demonstrate that ARSDA/T brings significant improvement in face recognition accuracy over both conventional supervised and semi-supervised subspace learning algorithms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources