Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jun;34(3):307-14.
doi: 10.1139/H09-008.

PGC-1alpha-induced improvements in skeletal muscle metabolism and insulin sensitivity

Affiliations
Review

PGC-1alpha-induced improvements in skeletal muscle metabolism and insulin sensitivity

Arend Bonen. Appl Physiol Nutr Metab. 2009 Jun.

Abstract

The peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator 1alpha (PGC-1alpha), a nuclear encoded transcriptional coactivator, increases the expression of many genes in skeletal muscle, including those involved with fatty acid oxidation and oxidative phosphorylation. Exercise increases the expression of PGC-1alpha, and the exercise-induced upregulation of many genes is attributable, in part, to the preceding activation and upregulation of PGC-1alpha. Indeed, PGC-1alpha overexpression, like exercise training, increases exercise performance. PGC-1alpha reductions in humans have been observed in type 2 diabetes, while, in cell lines, PGC-1alpha mimics the exercise-induced improvement in insulin sensitivity. However, unexpectedly, in mammalian muscle, PGC-1alpha overexpression contributed to the development of diet-induced insulin resistance. This may have been related to the massive overexpression of PGC-1alpha, which induced the upregulation of the fatty acid transporter FAT/CD36 and led to an increase in intramuscular lipids, which interfere with insulin signalling. In contrast, when PGC-1alpha was overexpressed modestly, within physiological limits, mitochondrial fatty acid oxidation was increased, GLUT4 expression was upregulated, and insulin-stimulated glucose transport was increased. More recently, similar PGC-1alpha-induced improvements in the insulin-resistant skeletal muscle of obese Zucker rats have been observed. These studies suggest that massive PGC-1alpha overexpression, but not physiologic PGC-1alpha overexpression, induces deleterious metabolic effects, and that exercise-induced improvements in insulin sensitivity are induced, in part, by the exercise-induced upregulation of PGC-1alpha.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources