Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;119(3):507-17.
doi: 10.1007/s00122-009-1059-5. Epub 2009 May 18.

Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay

Affiliations

Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay

Eduard Akhunov et al. Theor Appl Genet. 2009 Aug.

Abstract

Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
GoldenGate SNP genotyping in polyploid wheat. a Principles of GoldenGate SNP genotyping in tetraploid wheat. The toppanel shows two genotypes of T. dicoccoides polymorphic for A/T SNP in the A-genome and monomorphic for the T base at the orthologous site in the B-genome. The bottompanel shows the same two genotypes except for the LSO annealing site in the B-genome showing a secondary mutation resulting in imperfect match. Upstream ASOs are blue and red and downstream LSO is black. b The expected Cy3/Cy5 fluorescence ratios for homozygous (AA, TT) and heterozygous (AT) diploid, tetraploid and hexaploid plants. The genotypes of the polymorphic sites are shown in parentheses
Fig. 2
Fig. 2
SNP sites failing to produce a two-cluster pattern. Genotyping plots were generated by graphing normalized Cy3 and Cy5 fluorescence intensities
Fig. 3
Fig. 3
Genotype calls in a sample of 53 accessions of tetraploid T. dicoccoides (a) and 38 accessions of hexaploid T. aestivum (b). The accession numbers of mapped EST unigenes are shown on the top of each panel. Genotyping plots were generated by plotting Cy3 and Cy5 normalized fluorescence intensities. a SNP sites polymorphic in the A-genome of T. dicoccoides. b SNP sites that were polymorphic in the hexaploid wheat A- or D-genomes
Fig. 4
Fig. 4
Distribution of minor allele frequencies of SNPs in the A- and D-genomes of T. aestivum and the A-genome of T. dicoccoides detected with the GoldenGate assay and sequencing in the SNP discovery panel

Similar articles

Cited by

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00122-006-0365-4', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00122-006-0365-4'}, {'type': 'PubMed', 'value': '17033786', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17033786/'}]}
    2. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1101/gr.808603', 'is_inner': False, 'url': 'https://doi.org/10.1101/gr.808603'}, {'type': 'PMC', 'value': 'PMC430889', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC430889/'}, {'type': 'PubMed', 'value': '12695326', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12695326/'}]}
    2. Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin Gustafson JP, Lazo G, Chao SM, Anderson OD, Linkiewicz AM, Dubcovsky J, La Rota M, Sorrells ME, Zhang DS, Nguyen HT, Kalavacharla V, Hossain K, Kianian SF, Peng JH, Lapitan NLV, Gonzalez-Hernandeiz JL, Anderson JA, Choi DW, Close TJ, Dilbirligi M, Gill KS, Walker-Simmons MK, Steber C, McGuire PE, Qualset CO, Dvorak J (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763 - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1371/journal.pgen.0010060', 'is_inner': False, 'url': 'https://doi.org/10.1371/journal.pgen.0010060'}, {'type': 'PMC', 'value': 'PMC1283159', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC1283159/'}, {'type': 'PubMed', 'value': '16292355', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/16292355/'}]}
    2. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60 - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1111/j.1365-313X.2007.03193.x', 'is_inner': False, 'url': 'https://doi.org/10.1111/j.1365-313x.2007.03193.x'}, {'type': 'PMC', 'value': 'PMC2169515', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2169515/'}, {'type': 'PubMed', 'value': '17662031', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17662031/'}]}
    2. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918 - PMC - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1105/tpc.021345', 'is_inner': False, 'url': 'https://doi.org/10.1105/tpc.021345'}, {'type': 'PMC', 'value': 'PMC514152', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC514152/'}, {'type': 'PubMed', 'value': '15208399', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15208399/'}]}
    2. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678 - PMC - PubMed

Publication types