Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors
- PMID: 19449813
- DOI: 10.1021/la900937e
Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors
Abstract
The cathodic electrophoretic deposition (EPD) method has been developed for the deposition of composite manganese dioxide-multiwalled carbon nanotube (MWCNT) films. Dopamine (DA) was shown to be an effective charging additive, which provides stabilization of manganese dioxide nanoparticles and MWCNTs in the suspensions. The influence of DA concentration on the deposition efficiency has been studied. EPD has been utilized for the fabrication of porous nanostructured films for application in electrochemical supercapacitors (ES). Obtained films were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermal analysis (DTA), cyclic voltammetry (CV), and impedance spectroscopy. CV data for the films tested in the 0.5 M Na(2)SO(4) solutions showed capacitive behavior in the voltage window of 0-0.9 V. The highest specific capacitance (SC) of approximately 650 F g(-1) was obtained at a scan rate of 2 mV s(-1). The SC decreased with an increasing scan rate in the range of 2-100 mV s(-1). The deposition mechanism, kinetics of deposition, and charge storage properties of the films are discussed.
Similar articles
-
Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.J Phys Chem B. 2013 Feb 14;117(6):1563-70. doi: 10.1021/jp304358q. Epub 2012 Jun 14. J Phys Chem B. 2013. PMID: 22662969
-
Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.Small. 2005 May;1(5):560-5. doi: 10.1002/smll.200400137. Small. 2005. PMID: 17193486
-
Electrophoretic nanotechnology of graphene-carbon nanotube and graphene-polypyrrole nanofiber composites for electrochemical supercapacitors.J Colloid Interface Sci. 2013 Oct 1;407:474-81. doi: 10.1016/j.jcis.2013.06.058. Epub 2013 Jul 3. J Colloid Interface Sci. 2013. PMID: 23880521
-
Carbon materials for supercapacitor application.Phys Chem Chem Phys. 2007 Apr 21;9(15):1774-85. doi: 10.1039/b618139m. Epub 2007 Mar 7. Phys Chem Chem Phys. 2007. PMID: 17415488 Review.
-
Fabrication of magnetic nanodot arrays for patterned magnetic recording media.J Nanosci Nanotechnol. 2007 Jan;7(1):225-31. J Nanosci Nanotechnol. 2007. PMID: 17455486 Review.
Cited by
-
A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors.Nanomicro Lett. 2020 May 30;12(1):118. doi: 10.1007/s40820-020-00451-z. Nanomicro Lett. 2020. PMID: 34138149 Free PMC article. Review.
-
Enhanced performance of nano-Bi2WO6-graphene as pseudocapacitor electrodes by charge transfer channel.Sci Rep. 2015 Feb 27;5:8624. doi: 10.1038/srep08624. Sci Rep. 2015. PMID: 25720545 Free PMC article.
-
Water plasma functionalized CNTs/MnO2 composites for supercapacitors.ScientificWorldJournal. 2013 Nov 19;2013:832581. doi: 10.1155/2013/832581. eCollection 2013. ScientificWorldJournal. 2013. PMID: 24348189 Free PMC article.
-
Electrodeposited Manganese Dioxides and Their Composites as Electrocatalysts for Energy Conversion Reactions.ChemSusChem. 2025 Mar 3;18(5):e202401907. doi: 10.1002/cssc.202401907. Epub 2024 Nov 15. ChemSusChem. 2025. PMID: 39412223 Free PMC article. Review.
-
Multicomponent Photocatalytic-Dispersant System for Oil Spill Remediation.ACS Omega. 2024 Feb 16;9(8):8797-8809. doi: 10.1021/acsomega.3c05982. eCollection 2024 Feb 27. ACS Omega. 2024. PMID: 38434850 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources