Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;220(3):756-64.
doi: 10.1002/jcp.21821.

Interference with cellular differentiation by D-serine through antagonism at N-methyl-D-aspartate receptors composed of NR1 and NR3A subunits in chondrocytes

Affiliations

Interference with cellular differentiation by D-serine through antagonism at N-methyl-D-aspartate receptors composed of NR1 and NR3A subunits in chondrocytes

Takeshi Takarada et al. J Cell Physiol. 2009 Sep.

Abstract

Serine racemase (SR) is responsible for the biosynthesis of D-serine (D-Ser), an endogenous co-agonist for the glycine (Gly)-binding site on N-methyl-D-aspartate (NMDA) receptors, from L-Ser in the brain. We have previously demonstrated high expression of SR by chondrocytes in cartilage. In this study, we attempted to elucidate the possible functional role of D-Ser in chondrogenesis. Expression of mRNA and corresponding protein was seen for SR in cultured rat costal chondrocytes, while the addition of L-Ser significantly increased intracellular and extracellular levels of D-Ser. In organotypic cultured mouse embryonic metatarsals isolated before vascularization, SR mRNA was highly localized in hypertrophic and calcified chondrocytes. Exposure to D-Ser not only suppressed several chondrocytic maturation markers, including alkaline phosphatase (ALP) activity, Ca2+ accumulation, nodule formation, and osteopontin expression, in rat chondrocytes, but also delayed chondral mineralization in mouse metatarsals. Either NMDA or Gly alone significantly increased Ca2+ accumulation in cultured chondrocytes, whereas D-Ser significantly prevented Ca2+ accumulation by Gly, but not by NMDA. Gly alone also significantly increased gene transactivation by the introduction of runt-related transcription factor-2 (Runx2) in COS7 cells transfected with NR1 and NR3A subunits, while D-Ser significantly prevented the increase by Gly without affecting the promoter activity of Runx2. In both cultured chondrocytes and metatarsals from NR1-null mice, significant decreases were seen in ALP activity and chondral mineralization, respectively. These results suggest that D-Ser may negatively regulate cellular differentiation through inhibiting NMDA receptors composed of NR1 and NR3A subunits in a manner related to Runx2 transcriptional activity in chondrocytes.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources