Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Jul;110(2):457-68.
doi: 10.1111/j.1471-4159.2009.06163.x. Epub 2009 May 13.

Cell-derived microparticles: a new challenge in neuroscience

Affiliations
Free article
Review

Cell-derived microparticles: a new challenge in neuroscience

Loïc Doeuvre et al. J Neurochem. 2009 Jul.
Free article

Abstract

Microparticles (MPs) are membrane fragments shed by cells activated by a variety of stimuli including serine proteases, inflammatory cytokines, growth factors, and stress inducers. MPs originating from platelets, leukocytes, endothelial cells, and erythrocytes are found in circulating blood at relative concentrations determined by the pathophysiological context. The procoagulant activity of MPs is their most characterized property as a determinant of thrombosis in various vascular and systemic diseases including myocardial infarction and diabetes. An increase in circulating MPs has also been associated with ischemic cerebrovascular accidents, transient ischemic attacks, multiple sclerosis, and cerebral malaria. Recent data indicate that besides their procoagulant components and identity antigens, MPs bear a number of bioactive effectors that can be disseminated, exchanged, and transferred via MPs cell interactions. Furthermore, as activated parenchymal cells may also shed MPs carrying identity antigens and biomolecules, MPs are now emerging as new messengers/biomarkers from a specific tissue undergoing activation or damage. Thus, detection of MPs of neurovascular origin in biological fluids such as CSF or tears, and even in circulating blood in case of blood-brain barrier leakage, would not only improve our comprehension of neurovascular pathophysiology, but may also constitute a powerful tool as a biomarker in disease prediction, diagnosis, prognosis, and follow-up.

PubMed Disclaimer

Publication types

MeSH terms

Substances