Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009;46(2):121-32.
doi: 10.3233/BIR-2009-0532.

Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes

Affiliations

Mechanical stimulation of nitric oxide synthesizing mechanisms in erythrocytes

P Ulker et al. Biorheology. 2009.

Abstract

It has been previously demonstrated that red blood cells (RBC) possess functional nitric oxide (NO) synthesizing mechanisms. RBC are also equipped with variety of intracellular control mechanisms, and respond to mechanical forces and to various biological stimuli by increased release of ATP. Nitric oxide has also been demonstrated to be released from RBC under certain circumstances, and it has been hypothesized that NO synthase (NOS), which is located in both the RBC membrane and cytoplasm, might be activated by mechanical factors. The present study aimed at investigating NOS activation and NO export induced by mechanical stress applied to RBC in suspension. Heparinized venous blood samples were obtained from healthy, adult volunteers and their hematocrit adjusted to 0.4 l/l. The RBC suspensions were equilibrated at room temperature (22+/-2 degrees C) with either room air or made hypoxic (36 mmHg, approximately 70% saturation) using moisturized 100% nitrogen. The samples were then continuously pumped through a glass tube (diameter = 0.06 cm; length = 33 cm) for 30 min using a dual syringe pump to maintain a wall shear stress of 0.5-2 Pa with NO concentrations in the RBC suspensions measured electrochemically. NO concentration significantly increased under the influence of 2 Pa in hypoxic RBC suspensions: 105.0+/-14.2 nM to 127.1+/-12.0 nM as the peak value at 20 min of perfusion. No increase was observed at lower levels of shear stress. Plasma nitrite/nitrate concentrations were measured in samples obtained at five minute intervals. Application of fluid shear stress to hypoxic RBC suspensions resulted in a significant, time-dependent increase of plasma nitrite/nitrate levels, reaching to 14.7+/-1.5 microM from a control value of 11.2+/-1.3 microM. The presence of the non-specific NOS inhibitor L-NAME (10(-3) M) prevented this increment. Additionally, both eNOS and serine 1177 phosphorylated eNOS immuno-fluorescence staining in RBC cytoplasm were shown to increase in response to applied shear stress. Our results support the hypothesis that RBC NO synthase is activated and that export of NO from RBC is enhanced by mechanical stress.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources