Palytoxin and the sodium/potassium pump--phosphorylation and potassium interaction
- PMID: 19461129
- DOI: 10.1088/1478-3975/6/3/036010
Palytoxin and the sodium/potassium pump--phosphorylation and potassium interaction
Abstract
We proposed a reaction model for investigating interactions between K+ and the palytoxin-sodium-potassium (PTX-Na+/K+) pump complex under conditions where enzyme phosphorylation may occur. The model is composed of (i) the Albers-Post model for Na+/K+-ATPase, describing Na+ and K+ pumping; (ii) the reaction model proposed for Na+/K+-ATPase interactions with its ligands (Na+, K+, ATP, ADP and P) and with PTX. A mathematical model derived for representing the reactions was used to simulate experimental studies of the PTX-induced current, in different concentrations for the pump ligands. The simulations allow interpretation of the simultaneous action of Na+/K+-ATPase phosphorylation and K+ on the PTX-induced channels. The results suggest that(i) phosphorylation increases the PTX toxic effect, increasing its affinity and reducing the K+occlusion rate, and (ii) K+ causes channel blockage, increases the toxin dissociation rate and impedes the induced channel phosphorylation, implying reduction of the PTX toxic effect.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical