Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 May 20;4(5):e5630.
doi: 10.1371/journal.pone.0005630.

Recrudescent Plasmodium berghei from pregnant mice displays enhanced binding to the placenta and induces protection in multigravida

Affiliations

Recrudescent Plasmodium berghei from pregnant mice displays enhanced binding to the placenta and induces protection in multigravida

Claudio R F Marinho et al. PLoS One. .

Abstract

Pregnancy-associated malaria (PAM) is associated with placenta pathology and poor pregnancy outcome but the mechanisms that control the malaria parasite expansion in pregnancy are still poorly understood and not amenable for study in human subjects. Here, we used a set of new tools to re-visit an experimental mouse model of pregnancy-induced malaria recrudescence, BALB/c with chronic Plasmodium berghei infection. During pregnancy 60% of the pre-exposed primiparous females showed pregnancy-induced malaria recrudescence and we demonstrated that the recrudescent P. berghei show an unexpected enhancement of the adherence to placenta tissue sections with a marked specificity for CSA. Furthermore, we showed that the intensity of parasitemia in primigravida was quantitatively correlated with the degree of thickening of the placental tissue and up-regulation of inflammation-related genes such as IL10. We also confirmed that the incidence of pregnancy-induced recrudescence, the intensity of the parasitemia peak and the impact on the pregnancy outcome decreased gradually from the first to the third pregnancy. Interestingly, placenta pathology and fetal impairment were also observed at low frequency among non-recrudescent females. Together, the data raise the hypothesis that recrudescent P. berghei displays selected specificity for the placenta tissue enabling on one hand, the triggering of the pathological process underlying PAM and on the other hand, the induction of PAM protection mechanisms that are revealed in subsequent pregnancies. Thus, by exploiting P. berghei pregnancy-induced recrudescence, this experimental system offers a mouse model to study the susceptibility to PAM and the mechanisms of disease protection in multigravida.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Malaria susceptibility is increased during pregnancy with detrimental effects for the progeny.
Representative parasitemia curves of BALB/c females infected with P. berghei - GFP (day 0) and treated with chloroquine for 3 days starting at day 7 (Panel A). Parasitemias of females maintained without male (non-pregnants) are represented in the upper plot. The lower plot shows 5 typical parasitemia curves of recrudescent primigravida. In Panel B average litter size and birth weight of 20 litters from non-infected primiparous females are compared with the average litter size of 29 litters and the birth weight average of 6 litters, from recrudescent primiparous females. Error bars represent standard error (***, p<0.001).
Figure 2
Figure 2. Peripheral parasitemia correlates with the reduction of placental blood sinusoids area.
(A) The blood sinusoidal area is plotted against the peripheral parasitemia peak observed in the pregnancy of primiparous females. The area of placental blood sinusoids, expressed as a fraction of the total placental area, was obtained using an automated morphometric procedure as described in Materials and Methods section. In recrudescent females, the degree of parasitemia was correlated with sinusoidal area reduction (correlation coefficient for recrudescent females is 0.45, P-value = 0.0012). Representative photomicrograph of placental sections HE stained from non-infected (B) and recrudescent (C–D) mothers. Accumulation of inflammatory cells (C), trophoblast thickening (arrows) and presence of iRBC (D) in blood sinusoids (arrowheads) are evidenced in placenta tissue from recrudescent mothers. Scale bars represent 15 µm in (B–D).
Figure 3
Figure 3. Placenta pathology is associated with altered gene expression of inflammation markers.
qRT-PCR of placenta tissue was used to detect the expression of cell type–specific genes indicating infiltration of inflammatory cells: Klrd1 gene for Natural Killer cells, Cd3e gene for T cells, Ncf2 gene for neutrophils and Mgl2 for macrophages (A). Placental gene expression was quantified for relevant markers of monocyte/macrophage chemotaxy (B), inflammation mediators (C) and vascular stress (D). RNA expression was quantified in 15 placentas from recrudescent primiparous BALB/c females and in 8 uninfected placentas, collected on G19. In (E) placental IL10 mRNA expression was separately analyzed in 5 placentas showing moderate pathology (+) and 4 placentas showing severe (++) pathology. Relative quantification was obtained with normalization by β-actin for (A), (C), (D) and (E) and by GAPDH for (B). Results are plotted as fold change over the respective non-infected controls and each bar represents the mean±s.e.m. (*, P-value<0.05).
Figure 4
Figure 4. P. berghei iRBC from recrudescent females show enhanced adhesion to placenta.
iRBC from males, non-pregnant females and recrudescent primiparous females were incubated on uninfected placental sections and the adherent parasitized cells were counted as described in Materials and Methods section (A). Adhesion assays were also performed after pre-treatment of placental sections with chondroitinase ABC or heparinase (negative control) (B, upper plot). Adhesion inhibition assays were carried out by pre-incubating iRBC from recrudescent females with 1 mg/ml concentrations of CSA or CA (negative control) (B, lower plot). In panel B the proportion of bound iRBC is expressed as a percentage of the control (non-treated placentas or non-preincubated iRBC, in upper and lower plots, respectively). Error bars represent the mean±s.e.m. of three independent experiments. (***, P-value<0.001).
Figure 5
Figure 5. Recrudescence incidence and peripheral parasitemia are decreased in multigravida.
(A) Frequency of females with high recrudescence (above 5% parasitemia), patency (parasitemia between 1% and 5%) and no recrudescence (parasitemia <1%) according to parity. Recrudescence incidence is significantly associated with parity (P-value = 0.001, Chi-square test). (B) Box-plots illustrate the range of the peripheral parasitemia peak according to parity. The parasitemia peak in the first pregnancy was significantly different from the second (P-value = 0.004) and third pregnancies (P-value = 0.006). * and represent extremes and outliers, respectively.
Figure 6
Figure 6. Reduced adverse pregnancy outcomes in multigravida.
Box-plots of the average litter size (A) and average newborn birth weight (B) according to parity (first, second and third pregnancy). Pregnancy outcome was significantly different in primigravida as compared to multigravida and non-infected pregnant females (***, P-value<0.001; **, P-value<0.01; *, P-value<0.05).
Figure 7
Figure 7. Occasional placenta pathology in non-recrudescent pregnant females.
Photomicrographs of HE-stained placental sections of sporadic cases of placental pathology in non-recrudescent females. The figure shows presence of iRBC adhered to the syncytiotrophoblast layer (A, insert) and in blood sinusoids (arrowheads) as well as trophoblast thickening (arrow). Scale bar represents 15 µm.

Similar articles

Cited by

References

    1. WHO. A strategic framework for malaria prevention and control during pregnancy in the African region. Geneva: World Health Organization AFR/MAL; 2004.
    1. Guyatt HL, Snow RW. Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa. Clin Microbiol Rev. 2004;17:760–769, table of contents. - PMC - PubMed
    1. Steketee RW, Wirima JJ, Hightower AW, Slutsker L, Heymann DL, et al. The effect of malaria and malaria prevention in pregnancy on offspring birthweight, prematurity, and intrauterine growth retardation in rural Malawi. Am J Trop Med Hyg. 1996;55:33–41. - PubMed
    1. Shulman CE, Marshall T, Dorman EK, Bulmer JN, Cutts F, et al. Malaria in pregnancy: adverse effects on haemoglobin levels and birthweight in primigravidae and multigravidae. Trop Med Int Health. 2001;6:770–778. - PubMed
    1. Menendez C, Ordi J, Ismail MR, Ventura PJ, Aponte JJ, et al. The impact of placental malaria on gestational age and birth weight. J Infect Dis. 2000;181:1740–1745. Epub 2000 May 1715. - PubMed

Publication types

MeSH terms