Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jun;292(6):787-97.
doi: 10.1002/ar.20912.

Differential limb scaling in the american alligator (Alligator mississippiensis) and its implications for archosaur locomotor evolution

Affiliations
Free article

Differential limb scaling in the american alligator (Alligator mississippiensis) and its implications for archosaur locomotor evolution

Victoria J Livingston et al. Anat Rec (Hoboken). 2009 Jun.
Free article

Abstract

Bipedalism evolved multiple times within archosaurs, and relatively shorter forelimbs characterize both crocodyliforms and nonavian dinosaurs. Analysis of a comprehensive ontogenetic sequence of specimens (embryo to adult) of the sauropodomorph Massospondylus has shown that bipedal limb proportions result from negative forelimb allometry. We ask, is negative forelimb allometry a pattern basal to archosaurs, amplified in certain taxa to produce bipedalism? Given the phylogenetic position of extant crocodylians and their relatively shorter forelimb, we tested the hypothesis that prevalent negative forelimb allometry is present in Alligator mississippiensis from a sample of wild specimens from embryonic to adult sizes. Long bone lengths (humerus, radius, ulna, femur, tibia, fibula, third metapodials) were measured with their epiphyseal cartilage intact at all sizes. Our results show an overall isometric pattern for most elements regressed on femur length, humerus length, or total limb length. However, negative allometry was prevalent for the ulna, and the third metapodials scale with positive allometry embryonically. These data suggest that the general forelimb proportions in relation to the hindlimb do not change significantly with increasing size in A. mississippiensis. The negative allometry of the ulna and embryonicaly positive allometry of the third metapodials appears to be related to maintaining the functional integrity of the limbs. We show that this pattern is different from that of the sauropodomorph Massospondylus, and we suggest that if bipedalism in archosaurs is tied, in part, to negative forearm allometry, it was either secondarily lost through isometric scaling, or never developed in the ancestor of A. mississippiensis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources