Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Apr;2(4):277-83.
doi: 10.1016/j.jcin.2008.08.023.

Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries

Affiliations
Free article
Comparative Study

Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology: efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries

Kaku Nakano et al. JACC Cardiovasc Interv. 2009 Apr.
Free article

Abstract

Objectives: The objective of this study was to formulate a nanoparticle (NP)-eluting drug delivery stent system by a cationic electrodeposition coating technology.

Background: Nanoparticle-mediated drug delivery systems (DDS) are poised to transform the development of innovative therapeutic devices. Therefore, we hypothesized that a bioabsorbable polymeric NP-eluting stent provides an efficient DDS that shows better and more prolonged delivery compared with dip-coating stent.

Methods: We prepared cationic NP encapsulated with a fluorescence marker (FITC) by emulsion solvent diffusion method, succeeded to formulate an NP-eluting stent with a novel cation electrodeposition coating technology, and compared the in vitro and in vivo characteristics of the FITC-loaded NP-eluting stent with dip-coated FITC-eluting stent and bare metal stent.

Results: The NP was taken up stably and efficiently by cultured vascular smooth muscle cells in vitro. In a porcine coronary artery model in vivo, substantial FITC fluorescence was observed in neointimal and medial layers of the stented segments that had received the FITC-NP-eluting stent until 4 weeks. In contrast, no substantial FITC fluorescence was observed in the segments from the polymer-based FITC-eluting stent or from bare metal stent. The magnitudes of stent-induced injury, inflammation, endothelial recovery, and neointima formation were comparable between bare metal stent and NP-eluting stent groups.

Conclusions: Therefore, this NP-eluting stent is an efficient NP-mediated DDS that holds as an innovative platform for the delivery of less invasive nano-devices targeting cardiovascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources