N-Methyl-D-aspartate receptor antagonist d-AP5 prevents pertussis toxin-induced alterations in rat spinal cords by inhibiting increase in concentrations of spinal CSF excitatory amino acids and downregulation of glutamate transporters
- PMID: 19463918
- DOI: 10.1016/j.brainresbull.2009.05.004
N-Methyl-D-aspartate receptor antagonist d-AP5 prevents pertussis toxin-induced alterations in rat spinal cords by inhibiting increase in concentrations of spinal CSF excitatory amino acids and downregulation of glutamate transporters
Abstract
Recently, we found that intrathecal (i.t.) pertussis toxin (PTX) injection produces thermal hyperalgesia and is associated with increasing concentrations of excitatory amino acids (EAAs) in spinal cerebrospinal fluid (CSF) dialysates; a reduction in the antinociceptive effects of morphine and glutamate transporters (GTs) was also observed. The reduction in the morphine-induced analgesic effects is directly related to increased extracellular EAA levels, which are maintained by GTs at physiological levels. In this study, we aimed to examine the role of GT isoforms in thermal hyperalgesia, determine the EAA concentrations in CSF dialysates, and elucidate the role of N-methyl-d-aspartate (NMDA) receptors in PTX-induced reduction in the antinociceptive effects of morphine. Two i.t. catheters and one microdialysis probe were inserted into male Wistar rats: one catheter was used for PTX (1 microg) and morphine (10 microg) injection and the other was connected to an osmotic pump for NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5; 2 microg/h for 4 days) continuous infusion. The microdialysis probe was used to collect CSF dialysates for EAA measurements by high-performance liquid chromatography. Intrathecal morphine failed to produce antinociceptive effects in PTX-treated rats, and d-AP5 coinfusion prevented the PTX-induced reduction in the antinociceptive effect and associated downregulation of the GTs. We conclude that NMDA receptor suppression inhibits EAA excitation and reduces the morphine-induced antinociception in PTX-treated rats.
Similar articles
-
Amitriptyline pretreatment preserves the antinociceptive effect of morphine in pertussis toxin-treated rats by lowering CSF excitatory amino acid concentrations and reversing the downregulation of glutamate transporters.Brain Res. 2008 Sep 26;1232:61-9. doi: 10.1016/j.brainres.2008.07.016. Epub 2008 Jul 12. Brain Res. 2008. PMID: 18680732
-
Protein kinase C inhibitor chelerythrine attenuates the morphine-induced excitatory amino acid release and reduction of the antinociceptive effect of morphine in rats injected intrathecally with pertussis toxin.Life Sci. 2006 Mar 13;78(16):1801-7. doi: 10.1016/j.lfs.2005.08.020. Epub 2005 Nov 3. Life Sci. 2006. PMID: 16271370
-
Suppressive effects of intrathecal granulocyte colony-stimulating factor on excessive release of excitatory amino acids in the spinal cerebrospinal fluid of rats with cord ischemia: role of glutamate transporters.Neuroscience. 2010 Feb 17;165(4):1217-32. doi: 10.1016/j.neuroscience.2009.11.033. Epub 2009 Nov 22. Neuroscience. 2010. PMID: 19932886
-
Implications of intrathecal pertussis toxin animal model on the cellular mechanisms of neuropathic pain syndrome.Acta Anaesthesiol Sin. 2003 Dec;41(4):187-96. Acta Anaesthesiol Sin. 2003. PMID: 14768516 Review.
-
[Role of excitatory amino acids in neuropathology].Medicina (B Aires). 1995;55(4):355-65. Medicina (B Aires). 1995. PMID: 8728878 Review. Spanish.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous