Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors
- PMID: 19468690
- PMCID: PMC2705704
- DOI: 10.1007/s11060-009-9919-z
Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors
Abstract
Glioblastoma multiforme (GBM) remains refractory to conventional therapy. CD133+ GBM cells have been recently isolated and characterized as chemo-/radio-resistant tumor-initiating cells and are hypothesized to be responsible for post-treatment recurrence. In order to explore the molecular properties of tumorigenic CD133+ GBM cells that resist treatment, we isolated CD133+ GBM cells from tumors that are recurrent and have previously received chemo-/radio-therapy. We found that the purified CD133+ GBM cells sorted from the CD133+ GBM spheres express SOX2 and CD44 and are capable of clonal self-renewal and dividing to produce fast-growing CD133- progeny, which form the major cell population within GBM spheres. Intracranial injection of purified CD133+, not CD133- GBM daughter cells, can lead to the development of YKL-40+ infiltrating tumors that display hypervascularity and pseudopalisading necrosis-like features in mouse brain. The molecular profile of purified CD133+ GBM cells revealed characteristics of neuroectoderm-like cells, expressing both radial glial and neural crest cell developmental genes, and portraying a slow-growing, non-differentiated, polarized/migratory, astrogliogenic, and chondrogenic phenotype. These data suggest that at least a subset of treated and recurrent GBM tumors may be seeded by CD133+ GBM cells with neural and mesenchymal properties. The data also imply that CD133+ GBM cells may be clinically indolent/quiescent prior to undergoing proliferative cell division (PCD) to produce CD133- GBM effector progeny. Identifying intrinsic and extrinsic cues, which promote CD133+ GBM cell self-renewal and PCD to support ongoing tumor regeneration may highlight novel therapeutic strategies to greatly diminish the recurrence rate of GBM.
Figures
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1158/0008-5472.CAN-04-1364', 'is_inner': False, 'url': 'https://doi.org/10.1158/0008-5472.can-04-1364'}, {'type': 'PubMed', 'value': '15466194', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15466194/'}]}
- Galli R, Binda E, Orfanelli U (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021. doi:10.1158/0008-5472.CAN-04-1364 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.2036535100', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.2036535100'}, {'type': 'PMC', 'value': 'PMC299944', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC299944/'}, {'type': 'PubMed', 'value': '14645703', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/14645703/'}]}
- Hemmati HD, Nakano I, Lazareff JA et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183. doi:10.1073/pnas.2036535100 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nature03128', 'is_inner': False, 'url': 'https://doi.org/10.1038/nature03128'}, {'type': 'PubMed', 'value': '15549107', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15549107/'}]}
- Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/sj.onc.1208311', 'is_inner': False, 'url': 'https://doi.org/10.1038/sj.onc.1208311'}, {'type': 'PubMed', 'value': '15558011', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15558011/'}]}
- Yuan X, Curtin J, Xiong Y et al (2004) Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23:9392–9400. doi:10.1038/sj.onc.1208311 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1038/nature05236', 'is_inner': False, 'url': 'https://doi.org/10.1038/nature05236'}, {'type': 'PubMed', 'value': '17051156', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/17051156/'}]}
- Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
