Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Aug;47(8):861-73.
doi: 10.1007/s11517-009-0497-1. Epub 2009 May 26.

Ultrasonic characterization of ultrasound contrast agents

Affiliations

Ultrasonic characterization of ultrasound contrast agents

Nico de Jong et al. Med Biol Eng Comput. 2009 Aug.

Abstract

The main constituent of an ultrasound contrast agent (UCA) is gas-filled microbubbles. An average UCA contains billions per ml. These microbubbles are excellent ultrasound scatterers due to their high compressibility. In an ultrasound field they act as resonant systems, resulting in harmonic energy in the backscattered ultrasound signal, such as energy at the subharmonic, ultraharmonic and higher harmonic frequencies. This harmonic energy is exploited for contrast enhanced imaging to discriminate the contrast agent from surrounding tissue. The amount of harmonic energy that the contrast agent bubbles generate depends on the bubble characteristics in combination with the ultrasound field applied. This paper summarizes different strategies to characterize the UCAs. These strategies can be divided into acoustic and optical methods, which focus on the linear or nonlinear responses of the contrast agent bubbles. In addition, the characteristics of individual bubbles can be determined or the bubbles can be examined when they are part of a population. Recently, especially optical methods have proven their value to study individual bubbles. This paper concludes by showing some examples of optically observed typical behavior of contrast bubbles in ultrasound fields.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Vibration of a 2.5-μm free bubble and coated bubble (χ = 0.55 N/m and κs = 2.3 10−8 kg/s.) at 2 MHz in water. Top radial oscillation, Middle scattered pressure at 1 cm, Bottom frequency response of scattered pressure
Fig. 2
Fig. 2
Attenuation (left) and scatter measurements (right) as function of the frequency
Fig. 3
Fig. 3
Harmonic response of Sonovue for four different acoustic pressures (8, 24, 48, 75 kPa). Excitation 3.5 MHz, 10 cycles
Fig. 4
Fig. 4
Received scattered power of Quantison by a 10 MHz transducer. The signal was generated by a 1 MHz transducer transmitting an acoustic pressure of 0.3 MPa (dashed) and 0.6 MPa (solid)
Fig. 5
Fig. 5
Measured responses of three single bubbles of three different sizes (4.6, 2.1 and 1.5 μm) excited with a driving pressure of 100 kPa. Left panel Measured pressure in Pa. Right Panel frequency response (reproduced with permission of JASA 2008)
Fig. 6
Fig. 6
a Sequence of 64 image frames of a 4.2 μm diameter microbubble, driven by a 6-cycle—US burst with a peak negative pressure of 250 kPa. b Diameter–time response. c Power spectrum of diameter–time response
Fig. 7
Fig. 7
Bubbles images at 1 MHz and 200 kPa with the Brandaris fast framing camera. Right panel the corresponding D–T curves
Fig. 8
Fig. 8
Optical frames showing initial PB127 microbubble (frame 1), shell fissure and gas escape (frames 4, 811) under ultrasound of 1.7 MHz, four cycles, MI 1.4 and formation of new free bubbles. Two new free bubbles (frames 41, 4760) demonstrating oscillations under ultrasound of 1.7 MHz, four cycles and MI 0.25. Last displayed frame shows an optical recording performed 40 ms later, demonstrating bubble disappearance due to dissolution
Fig. 9
Fig. 9
Vibration modes

References

    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/00004424-199505000-00008', 'is_inner': False, 'url': 'https://doi.org/10.1097/00004424-199505000-00008'}, {'type': 'PubMed', 'value': '7558737', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/7558737/'}]}
    2. van Liew HD, Burkard ME (1995) Behavior of bubbles of slowly permeating gas used for ultrasonic imaging contrast. Invest Radiol 30:315–321. doi:10.1097/00004424-199505000-00008 - PubMed
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1063/1.1747520', 'is_inner': False, 'url': 'https://doi.org/10.1063/1.1747520'}]}
    2. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509. doi:10.1063/1.1747520
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1016/S0301-5629(98)00034-9', 'is_inner': False, 'url': 'https://doi.org/10.1016/s0301-5629(98)00034-9'}, {'type': 'PubMed', 'value': '9695277', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9695277/'}]}
    2. Kabalnov A, Klein D, Pelura T, Schutt E, Weers J (1998) Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory. Ultrasound Med Biol 24:739–749. doi:10.1016/S0301-5629(98)00034-9 - PubMed
    1. Medwin H (1977) Counting bubbles acoustically: A review. Ultrasonics 15:7–13. doi:10.1016/0041-624X(77)90005-1
    1. {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1046/j.1540-8175.2002.00229.x', 'is_inner': False, 'url': 'https://doi.org/10.1046/j.1540-8175.2002.00229.x'}, {'type': 'PubMed', 'value': '12022933', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/12022933/'}]}
    2. de Jong N, Bouakaz A, Frinking P (2002) Basic acoustic properties of microbubbles. Echocardiography 19:229–240. doi:10.1046/j.1540-8175.2002.00229.x - PubMed

LinkOut - more resources