Genetic manipulation in pigs
- PMID: 19469029
- PMCID: PMC2687522
- DOI: 10.1097/mot.0b013e3283292549
Genetic manipulation in pigs
Abstract
Purpose of review: Recent developments in the field of genetic engineering have made it possible to add, delete or exchange genes from one species to another. This technology has special relevance to the field of xenotransplantation, in which the elimination of a species-specific disparity could make the difference between success and failure of an organ transplant. This review focuses on developments in both the techniques and applications of genetically modified animals.
Recent findings: Advances have been made using existing techniques for genetic modifications of swine and in the development of new, emerging technologies, including enzymatic engineering and the use of small interfering RNA. Applications of the modified animals have provided evidence that genetically modified swine have the potential to overcome both physiologic and immunologic barriers that have previously impeded this field. The use of alpha-1,3-galactosyltransferase gene-knockout animals as donors have shown marked improvements in xenograft survivals.
Summary: Techniques for genetic engineering of swine have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. Organs from genetically engineered animals have enjoyed markedly improved survivals in nonhuman primates, especially in protocols directed toward the induction of tolerance, presumably by avoiding immunization to new antigens.
References
-
- Cozzi E, Tucker AW, Langford GA, Pino-Chavez G, Wright L, O’Connell MJ, Young VJ, Lancaster R, McLaughlin M, Hunt K, Bordin MC, White DJ. Characterization of pigs transgenic for human decay-accelerating factor. Transplantation. 1997;64:1383–1392. - PubMed
-
- Diamond LE, McCurry KR, Martin MJ, McClellan SB, Oldham ER, Platt JL, Logan JS. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation. 1996;61:1241–1249. - PubMed
-
- Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science. 2002;295:1089–1092. - PubMed
-
- Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, Jobst PM, Sharma SB, Lamborn AE, Garst AS, Moore M, Demetris AJ, Rudert WA, Bottino R, Bertera S, Trucco M, Starzl TE, Dai Y, Ayares DL. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299:411–414. - PMC - PubMed
-
- Kolber-Simonds D, Lai L, Watt SR, Denaro M, Arn S, Augenstein ML, Betthauser J, Carter DB, Greenstein JL, Hao Y, Im GS, Liu Z, Mell GD, Murphy CN, Park KW, Rieke A, Ryan DJ, Sachs DH, Forsberg EJ, Prather RS, Hawley RJ. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci US A. 2004;101:7335–7340. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
