Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;55(3):289-307.
doi: 10.1590/s0034-70942005000300006.

[Effects of induced hypertension on brain compliance and perfusion pressure in experimental intracranial hypertension: comparison between cryogenic brain injury and subdural balloon]

[Article in Portuguese]
Affiliations

[Effects of induced hypertension on brain compliance and perfusion pressure in experimental intracranial hypertension: comparison between cryogenic brain injury and subdural balloon]

[Article in Portuguese]
Nelson Mizumoto et al. Rev Bras Anestesiol. 2005 Jun.

Abstract

Background and objectives: Traumatic brain injury (TBI) may increase intracranial pressure (ICP) and decrease brain compliance (BC). Different injuries are applied to TBI models studying the same variables. Since they are indistinctly used, the objective was to compare ICP and BC in two different TBI models.

Methods: This study involved 18 male dogs anesthetized, ventilated and randomly distributed in two groups: SB - subdural balloon (n = 9) and CI - cryogenic injury (n = 9). ICP, BC and cerebral perfusion pressure (CPP) were evaluated in five moments: end of preparation (M0), normal brain (M1), beginning of injury (M2), end of injury (M3) and established injury (M4). BC is ICP variation during induced hypertension (IH) in 50 mmHg in M1 and M4. CPP = Mean Blood Pressure (MBP) - ICP. Paired Student's t test was used for the same group in different moments and Student's t test was used for two different samples in the same moment between groups.

Results: MBP was similar for both groups in all studied moments (p = 0.31 in M0; p = 0.25 in M1; p = 0.31 in M2; p = 0.19 in M3; p = 0.05 in M4). ICP was similar between groups in M0 (p = 0.27) and M1 (p = 0.21), however different in M2 (p < 0.001). ICP was similar for both groups in M3 (p = 0.39) and M4 (p = 0.98), increased for SB in M1 (p = 0.04) and M2 (p = 0.01), but not in M3 (p = 0.36) and M4 (p = 0.12). For CI, ICP has increased in M1 (p < 0.01), M3 (p < 0.001) and M4 (p < 0.001), but not in M2 (p = 0.18). There has been CPP increase in M1 (p < 0.001) and M4 (p < 0.001), with no difference between groups (p = 0.16 in M1 and p = 0.21 in M4). There has been decreased CPP in M2 for both groups (p < 0.001), however more severe for CI (p < 0.001). In M3, there has been increased CPP for SB (p = 0.02) and decreased CPP for CI (p = 0.01), what has made CPP similar for both groups (p = 0.43). CPP has equally increased in M4 for both groups (p = 0.16).

Conclusions: Induced hypertension (IH) effect on CI model is comparable to what has been observed in the SB model. This type of injury should be better studied to establish precision in the ratio between injury extension and BC decrease, which seems to be a gradual and evolving process, with not totally understood limits.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources