Predicting EuroQol (EQ-5D) scores from the patient-reported outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample
- PMID: 19472072
- PMCID: PMC2704290
- DOI: 10.1007/s11136-009-9489-8
Predicting EuroQol (EQ-5D) scores from the patient-reported outcomes measurement information system (PROMIS) global items and domain item banks in a United States sample
Abstract
Background: Preference-based health index scores provide a single summary score assessing overall health-related quality of life and are useful as an outcome measure in clinical studies, for estimating quality-adjusted life years for economic evaluations, and for monitoring the health of populations. We predicted EuroQoL (EQ-5D) index scores from patient-reported outcomes measurement information system (PROMIS) global items and domain item banks.
Methods: This was a secondary analysis of health outcome data collected in an internet survey as part of the PROMIS Wave 1 field testing. For this study, we included the 10 global items and the physical function, fatigue, pain impact, anxiety, and depression item banks. Linear regression analyses were used to predict EQ-5D index scores based on the global items and selected domain banks.
Results: The regression models using eight of the PROMIS global items (quality of life, physical activities, mental health, emotional problems, social activities, pain, and fatigue and either general health or physical health items) explained 65% of the variance in the EQ-5D. When the PROMIS domain scores were included in a regression model, 57% of the variance was explained in EQ-5D scores. Comparisons of predicted to actual EQ-5D scores by age and gender groups showed that they were similar.
Conclusions: EQ-5D preference scores can be predicted accurately from either the PROMIS global items or selected domain banks. Application of the derived regression model allows the estimation of health preference scores from the PROMIS health measures for use in economic evaluations.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/00005650-199206000-00002', 'is_inner': False, 'url': 'https://doi.org/10.1097/00005650-199206000-00002'}, {'type': 'PubMed', 'value': '1593914', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/1593914/'}]}
- Ware, J. E., Jr, & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care,30(6), 473–483. doi:10.1097/00005650-199206000-00002. - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1097/MLR.0b013e31814848f1', 'is_inner': False, 'url': 'https://doi.org/10.1097/mlr.0b013e31814848f1'}, {'type': 'PMC', 'value': 'PMC2647803', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC2647803/'}, {'type': 'PubMed', 'value': '18007166', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/18007166/'}]}
- Fryback, D. G., Dunham, N. C., Palta, M., Hanmer, J., Buechner, J., Cherepanov, D., et al. (2007). US norms for six generic health-related quality-of-life indexes from the national health measurement study. Medical Care,45(12), 1162–1170. doi:10.1097/MLR.0b013e31814848f1. - PMC - PubMed
-
- None
- Gold, M. R., Patrick, D. L., & Torrance, G. W. (1996). Identifying and valuing outcomes. In M. R. Gold, D. L. Patrick, & G. W. Torrance (Eds.), Cost-effectiveness in health and medicine. New York: Oxford University Press.
-
- None
- Brooks, R., Rabin, R., & de Charro, F. (2003). The measurement and valuation of health status using EQ-5D: A European perspective. Dordrecht, The Netherlands: Kluwer Academic Publishers.
-
- None
- Feeny, D., Torrance, G., & Furlong, W. (1996). Health utilities index. In D. Feeny, G. Torrance, & W. Furlong (Eds.), Quality of life and pharmacoeconomics in clinical trials. Philadelphia, PA: Lippincott-Raven Press.
Publication types
MeSH terms
Grants and funding
- U01AR52155/AR/NIAMS NIH HHS/United States
- U01 AR052170/AR/NIAMS NIH HHS/United States
- U01 AR052181/AR/NIAMS NIH HHS/United States
- U01 AR052177/AR/NIAMS NIH HHS/United States
- U01AR52170/AR/NIAMS NIH HHS/United States
- U01AR52158/AR/NIAMS NIH HHS/United States
- U01AR52171/AR/NIAMS NIH HHS/United States
- U01 AR052155/AR/NIAMS NIH HHS/United States
- U01AR52186/AR/NIAMS NIH HHS/United States
- U01R52177/PHS HHS/United States
- U01 AR052186/AR/NIAMS NIH HHS/United States
- U01AR52181/AR/NIAMS NIH HHS/United States
- U01 AR052158/AR/NIAMS NIH HHS/United States
- U01 AR052171/AR/NIAMS NIH HHS/United States
- 1U01-AR052177/AR/NIAMS NIH HHS/United States