Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;220(3):716-26.
doi: 10.1002/jcp.21819.

Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown

Affiliations

Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced barrier breakdown

Y Baumer et al. J Cell Physiol. 2009 Sep.

Abstract

Barrier stabilizing effects of cAMP as well as of the small GTPase Rac 1 are well established. Moreover, it is generally believed that permeability-increasing mediators such as thrombin disrupt endothelial barrier functions primarily via activation of Rho A. In this study, we provide evidence that decrease of both cAMP levels and of Rac 1 activity contribute to thrombin-mediated barrier breakdown. Treatment of human dermal microvascular endothelial cells (HDMEC) with Rac 1-inhibitor NSC-23766 decreased transendothelial electrical resistance (TER) and caused intercellular gap formation. These effects were reversed by addition of forskolin/rolipram (F/R) to increase intracellular cAMP but not by the cAMP analogue 8-pCPT-2'-O-Methyl-cAMP (O-Me-cAMP) which primarily stimulates protein kinase A (PKA)-independent signaling via Epac/Rap 1. However, both F/R and O-Me-cAMP did not increase TER above control levels in the presence of NSC-23766 in contrast to experiments without Rac 1 inhibition. Because Rac 1 was required for maintenance of barrier functions as well as for cAMP-mediated barrier stabilization, we tested the role of Rac 1 and cAMP in thrombin-induced barrier breakdown. Thrombin-induced drop of TER and intercellular gap formation were paralleled by a rapid decrease of cAMP as revealed by fluorescence resonance energy transfer (FRET). The efficacy of F/R or O-Me-cAMP to block barrier-destabilizing effects of thrombin was comparable to Y27632-induced inhibition of Rho kinase but was blunted when Rac 1 was inactivated by NSC-23766. Taken together, these data indicate that decrease of cAMP and Rac 1 activity may be an important step in inflammatory barrier disruption.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources