Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 May 27:9:109.
doi: 10.1186/1471-2180-9-109.

The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

Affiliations
Comparative Study

The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens

Muktak Aklujkar et al. BMC Microbiol. .

Abstract

Background: The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences.

Results: The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second putative succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes.

Conclusion: The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pathways of acetate activation in G. metallireducens. (a) The succinyl:acetate CoA-transferase reaction. (b) The acetate kinase and phosphotransacetylase reactions. (c) The acetyl-CoA synthetase reaction.
Figure 2
Figure 2
Growth of G. metallireducens on propionate. (a) The gene cluster predicted to encode enzymes of propionate metabolism. (b) The proposed pathway of propionate metabolism.
Figure 3
Figure 3
Potential futile cycling of pyruvate/oxaloacetate and phosphoenolpyruvate in G. metallireducens. (a) Conversion of pyruvate to phosphoenolpyruvate. (b) Conversion of phosphoenolpyruvate to pyruvate or oxaloacetate.
Figure 4
Figure 4
Acquisition of a second fumarate reductase/succinate dehydrogenase by G. metallireducens. (a) The ancestral gene cluster. (b) The gene cluster acquired from a relative of the Chlorobiaceae, located near other acquired genes relevant to central metabolism: an uncharacterized enzyme related to succinyl-CoA synthetase and citrate synthase (Gmet_0305-Gmet_0306) and phosphoenolpyruvate carboxylase (Gmet_0304). Conserved nucleotide sequences (black stripes) were also identified in the two regions.
Figure 5
Figure 5
The respiratory nitrate reductase operons. (a) The major (expressed) operon also encodes the nitrate and nitrite transporters (narK-1, narK-2), two c-type cytochromes including ppcF, and two genes of molybdenum cofactor biosynthesis (moeA-2, moaA-2). (b) The minor operon (expression not detected) also encodes the Rieske iron-sulfur component of nitrite reductase (nirD) and a c-type cytochrome, but lacks a narJ gene.
Figure 6
Figure 6
G. sulfurreducens and G. metallireducens possess different genes for molybdenum cofactor biosynthesis. (a) G. sulfurreducens has the global regulator modE. (b) G. metallireducens has multiple copies of moeA, moaA, and mosC, and putative integration host factor binding sites (black stripes). Both genomes have conserved genes (dark grey) for molybdate transport (modABC) and molybdopterin biosynthesis (moeA, moaCB, mobA-mobB, mosC) alongside tup genes for tungstate transport (white), but neither genome has all the genes thought to be essential for bis-(molybdopterin guanine dinucleotide)-molybdenum biosynthesis (light grey). See also Table 1.

Similar articles

Cited by

References

    1. Lovley DR. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 1991;55:259–287. - PMC - PubMed
    1. Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol. 2004;49:219–286. doi: 10.1016/S0065-2911(04)49005-5. - DOI - PubMed
    1. Lovley DR, Stolz JF, Nord GLJ, Phillips EJP. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature. 1987;330:252–254. doi: 10.1038/330252a0. - DOI
    1. Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988;54:1472–1480. - PMC - PubMed
    1. Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature. 1989;339:297–299. doi: 10.1038/339297a0. - DOI

Publication types

LinkOut - more resources