Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;14(2):142-8.
doi: 10.1016/j.ejpain.2009.04.011. Epub 2009 May 26.

Anatomical connections between brain areas activated during rectal distension in healthy volunteers: a visceral pain network

Affiliations

Anatomical connections between brain areas activated during rectal distension in healthy volunteers: a visceral pain network

Xavier Moisset et al. Eur J Pain. 2010 Feb.

Abstract

Diffusion Tensor Imaging (DTI) is a promising new imaging method allowing in vivo mapping of anatomical connections in the living human brain. We combined DTI with functional magnetic resonance imaging (fMRI) to investigate the anatomical relationships between areas involved in visceral sensations in humans. Non-painful and moderately painful rectal distensions were performed in 11 healthy women (38.4+/-3.1years). fMRI was used to analyse the changes in brain activity during both types of distension. Then, DTI was applied for tracking fibers between the main activated regions. Non-painful distension bilaterally activated the PreFrontal Cortex (PFC), the Anterior Cingulate Cortex (ACC) and the right insula. Painful distension bilaterally activated the primary (S1) and secondary (S2) somatosensory cortices, the motor cortex, the frontal inferior gyrus, the thalamus, the insula, the striatum and the cerebellum. DTI revealed direct connections between insula, and the four areas more frequently activated in this study, i.e. ACC, thalamus, S1, S2 and PFC. The combined use of fMRI and DTI in healthy subjects during rectal distension revealed a neural network of visceral sensory perception involving the insula, thalamus, somatosensory cortices, ACC and PFC.

PubMed Disclaimer

Publication types