Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Jul;136(13):2235-45.
doi: 10.1242/dev.035204. Epub 2009 May 27.

Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration

Affiliations

Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration

Tetsuya Bando et al. Development. 2009 Jul.

Abstract

An amputated cricket leg regenerates all missing parts with normal size and shape, indicating that regenerating blastemal cells are aware of both their position and the normal size of the leg. However, the molecular mechanisms regulating this process remain elusive. Here, we use a cricket model to show that the Dachsous/Fat (Ds/Ft) signalling pathway is essential for leg regeneration. We found that knockdown of ft or ds transcripts by regeneration-dependent RNA interference (rdRNAi) suppressed proliferation of the regenerating cells along the proximodistal (PD) axis concomitantly with remodelling of the pre-existing stump, making the regenerated legs shorter than normal. By contrast, knockdown of the expanded (ex) or Merlin (Mer) transcripts induced over-proliferation of the regenerating cells, making the regenerated legs longer. These results are consistent with those obtained using rdRNAi during intercalary regeneration induced by leg transplantation. We present a model to explain our results in which the steepness of the Ds/Ft gradient controls growth along the PD axis of the regenerating leg.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources