Ultrahigh resolution Fourier domain optical coherence tomography
- PMID: 19475051
- DOI: 10.1364/opex.12.002156
Ultrahigh resolution Fourier domain optical coherence tomography
Abstract
We present, for the first time, in vivo ultrahigh resolution (~2.5 microm in tissue), high speed (10000 A-scans/second equivalent acquisition rate sustained over 160 A-scans) retinal imaging obtained with Fourier domain (FD) OCT employing a commercially available, compact (500x260mm), broad bandwidth (120 nm at full-width-at-half-maximum centered at 800 nm) Titanium:sapphire laser (Femtosource Integral OCT, Femtolasers Produktions GmbH). Resolution and sampling requirements, dispersion compensation as well as dynamic range for ultrahigh resolution FD OCT are carefully analyzed. In vivo OCT sensitivity performance achieved by ultrahigh resolution FD OCT was similar to that of ultrahigh resolution time domain OCT, although employing only 2-3 times less optical power (~300 microW). Visualization of intra-retinal layers, especially the inner and outer segment of the photoreceptor layer, obtained by FDOCT was comparable to that, accomplished by ultrahigh resolution time domain OCT, despite an at least 40 times higher data acquisition speed of FD OCT.
Similar articles
-
Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation.Opt Express. 2004 May 31;12(11):2404-22. doi: 10.1364/opex.12.002404. Opt Express. 2004. PMID: 19475077
-
Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography.Opt Express. 2004 May 31;12(11):2435-47. doi: 10.1364/opex.12.002435. Opt Express. 2004. PMID: 19475080
-
Assessment of central visual function in Stargardt's disease/fundus flavimaculatus with ultrahigh-resolution optical coherence tomography.Invest Ophthalmol Vis Sci. 2005 Jan;46(1):310-6. doi: 10.1167/iovs.04-0212. Invest Ophthalmol Vis Sci. 2005. PMID: 15623790
-
Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems.Am J Ophthalmol. 2010 Jan;149(1):18-31. doi: 10.1016/j.ajo.2009.08.037. Am J Ophthalmol. 2010. PMID: 20103039 Review.
-
Key Developments for Partial Coherence Biometry and Optical Coherence Tomography in the Human Eye Made in Vienna.Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT460-74. doi: 10.1167/iovs.16-19362. Invest Ophthalmol Vis Sci. 2016. PMID: 27409506 Review.
Cited by
-
Microscopic optical coherence tomography (mOCT) at 600 kHz for 4D volumetric imaging and dynamic contrast.Biomed Opt Express. 2021 Sep 7;12(10):6024-6039. doi: 10.1364/BOE.425001. eCollection 2021 Oct 1. Biomed Opt Express. 2021. PMID: 34745719 Free PMC article.
-
Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging.Ophthalmology. 2006 Aug;113(8):1425-31. doi: 10.1016/j.ophtha.2006.03.020. Epub 2006 Jun 12. Ophthalmology. 2006. PMID: 16766031 Free PMC article.
-
High speed full range complex spectral domain optical coherence tomography.Opt Express. 2005 Jan 24;13(2):583-94. doi: 10.1364/opex.13.000583. Opt Express. 2005. PMID: 19488388 Free PMC article.
-
Experimental confirmation of potential swept source optical coherence tomography performance limitations.Appl Opt. 2008 Nov 20;47(33):6151-8. doi: 10.1364/ao.47.006151. Appl Opt. 2008. PMID: 19023378 Free PMC article.
-
Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention.Biomed Opt Express. 2012 Dec 1;3(12):3105-18. doi: 10.1364/BOE.3.003105. Epub 2012 Nov 1. Biomed Opt Express. 2012. PMID: 23243562 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources