Transcriptional analysis of the Candida albicans cell cycle
- PMID: 19477921
- PMCID: PMC2710843
- DOI: 10.1091/mbc.e09-03-0210
Transcriptional analysis of the Candida albicans cell cycle
Abstract
We have examined the periodic expression of genes through the cell cycle in cultures of the human pathogenic fungus Candida albicans synchronized by mating pheromone treatment. Close to 500 genes show increased expression during the G1, S, G2, or M transitions of the C. albicans cell cycle. Comparisons of these C. albicans periodic genes with those already found in the budding and fission yeasts and in human cells reveal that of 2200 groups of homologous genes, close to 600 show periodicity in at least one organism, but only 11 are periodic in all four species. Overall, the C. albicans regulatory circuit most closely resembles that of Saccharomyces cerevisiae but contains a simplified structure. Although the majority of the C. albicans periodically regulated genes have homologues in the budding yeast, 20% (100 genes), most of which peak during the G1/S or M/G1 transitions, are unique to the pathogenic yeast.
Figures






Similar articles
-
Homologs of the yeast neck filament associated genes: isolation and sequence analysis of Candida albicans CDC3 and CDC10.Mol Gen Genet. 1994 Mar;242(6):689-98. doi: 10.1007/BF00283424. Mol Gen Genet. 1994. PMID: 8152419
-
The role of Candida albicans FAR1 in regulation of pheromone-mediated mating, gene expression and cell cycle arrest.Mol Microbiol. 2008 Apr;68(2):392-404. doi: 10.1111/j.1365-2958.2008.06158.x. Epub 2008 Mar 14. Mol Microbiol. 2008. PMID: 18346117
-
Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans.Mol Microbiol. 2002 Dec;46(5):1345-51. doi: 10.1046/j.1365-2958.2002.03263.x. Mol Microbiol. 2002. PMID: 12453220
-
Dimorphism and virulence in Candida albicans.Curr Opin Microbiol. 1998 Dec;1(6):687-92. doi: 10.1016/s1369-5274(98)80116-1. Curr Opin Microbiol. 1998. PMID: 10066539 Review.
-
The distinct morphogenic states of Candida albicans.Trends Microbiol. 2004 Jul;12(7):317-24. doi: 10.1016/j.tim.2004.05.008. Trends Microbiol. 2004. PMID: 15223059 Review.
Cited by
-
Statistical approaches to use a model organism for regulatory sequences annotation of newly sequenced species.PLoS One. 2012;7(9):e42489. doi: 10.1371/journal.pone.0042489. Epub 2012 Sep 11. PLoS One. 2012. PMID: 22984403 Free PMC article.
-
Role of transcription factor CaNdt80p in cell separation, hyphal growth, and virulence in Candida albicans.Eukaryot Cell. 2010 Apr;9(4):634-44. doi: 10.1128/EC.00325-09. Epub 2010 Jan 22. Eukaryot Cell. 2010. PMID: 20097739 Free PMC article.
-
The evolution of a G1/S transcriptional network in yeasts.Curr Genet. 2018 Feb;64(1):81-86. doi: 10.1007/s00294-017-0726-3. Epub 2017 Jul 25. Curr Genet. 2018. PMID: 28744706 Review.
-
Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans.PLoS Pathog. 2013;9(4):e1003305. doi: 10.1371/journal.ppat.1003305. Epub 2013 Apr 18. PLoS Pathog. 2013. PMID: 23637598 Free PMC article.
-
The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules.Curr Biol. 2011 May 24;21(10):889-96. doi: 10.1016/j.cub.2011.04.002. Epub 2011 May 5. Curr Biol. 2011. PMID: 21549601 Free PMC article.
References
-
- Bachewich C., Nantel A., Whiteway M. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Mol. Microbiol. 2005;57:942–959. - PubMed
-
- Bähler J. Cell-cycle control of gene expression in budding and fission yeast. Annu. Rev. Genet. 2005;39:69–94. - PubMed
-
- Bennett R. J., Johnson A. D. The role of nutrient regulation and the Gpa2 protein in the mating pheromone response of C. albicans. Mol. Microbiol. 2006;62:100–119. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases